Skip to main content Accessibility help
×
×
Home

Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate

  • Jose A. Canas (a1), L. Damaso (a1), J. Hossain (a2) and P. Babu Balagopal (a3)

Abstract

Elevated fatty acid binding proteins (FABP) may play a role in obesity and co-morbidities. The role of nutritional interventions in modulating these levels remains unclear. The aim of this post hoc study was to determine the effect of overweight (OW) on FABP4 and FABP5 in boys in relation to indices of adiposity, insulin resistance and inflammation, and to investigate the effects of a 6-month supplementation with an encapsulated fruit and vegetable juice concentrate (FVJC) plus nutritional counselling (NC) on FABP levels. A post hoc analysis of a double-blind, randomised, placebo-controlled study of children recruited from the general paediatric population was performed. A total of thirty age-matched prepubertal boys (nine lean and twenty-one OW; aged 6–10 years) were studied. Patients received NC by a registered dietitian and were randomised to FVJC or placebo capsules for 6 months. FABP4, FABP5, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), glucose-induced acute insulin response (AIR), lipid-corrected β-carotene (LCβC), adiponectin, leptin, high-sensitivity C-reactive protein (hs-CRP), IL-6 and body composition by dual-energy X-ray absorptiometry were determined before and after the intervention. FABP were higher (P < 0·01) in the OW v. lean boys and correlated directly with HOMA-IR, abdominal fat mass (AFM), hs-CRP, IL-6, and LCβC (P < 0·05 for all). FABP4 was associated with adiponectin and AIR (P < 0·05). FVJC plus NC reduced FABP4, HOMA-IR and AFM (P < 0·05 for all) but not FABP5. OW boys showed elevated FABP4 and FABP5, but only FABP4 was lowered by the FVJC supplement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: J. Atilio Canas, email jcanas@nemours.org

References

Hide All
1. Landrier, J-F, Marcotorchino, J & Tourniaire, F (2012) Lipophilic micronutrients and adipose tissue biology. Nutrients 4, 16221649.
2. Bonet, ML, Canas, JA, Ribot, J, et al. (2015) Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 572, 112125.
3. Maeda, K, Uysal, KT, Makowski, L, et al. (2003) Role of the fatty acid binding protein mal1 in obesity and insulin resistance. Diabetes 52, 300307.
4. Tan, NS, Shaw, NS, Vinckenbosch, N, et al. (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22, 51145127.
5. Maeda, K, Cao, H, Kono, K, et al. (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1, 107119.
6. Furuhashi, M, Fucho, R, Gorgun, CZ, et al. (2008) Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest 118, 26402650.
7. Hotamisligil, GS, Johnson, RS, Distel, RJ, et al. (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274, 13771379.
8. Uysal, KT, Scheja, L, Wiesbrock, SM, et al. (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141, 33883396.
9. Tuncman, G, Erbay, E, Hom, X, et al. (2006) A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci U S A 103, 69706975.
10. Xu, A, Wang, Y, Xu, JY, et al. (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52, 405413.
11. Mohlig, M, Weickert, MO, Ghadamgadai, E, et al. (2007) Adipocyte fatty acid-binding protein is associated with markers of obesity, but is an unlikely link between obesity, insulin resistance, and hyperandrogenism in polycystic ovary syndrome women. Eur J Endocrinol 157, 195200.
12. Reinehr, T, Stoffel-Wagner, B & Roth, CL (2007) Adipocyte fatty acid-binding protein in obese children before and after weight loss. Metabolism 56, 17351741.
13. Aeberli, I, Beljean, N, Lehmann, R, et al. (2008) The increase of fatty acid-binding protein aP2 in overweight and obese children: interactions with dietary fat and impact on measures of subclinical inflammation. Int J Obes (Lond) 32, 15131520.
14. Makowski, L & Hotamisligil, GS (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16, 543548.
15. Krzystek-Korpacka, M, Patryn, E, Bednarz-Misa, I, et al. (2011) Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome. J Pediatr Endocrinol Metab 24, 921928.
16. Choi, KM, Yannakoulia, M, Park, MS, et al. (2011) Serum adipocyte fatty acid-binding protein, retinol-binding protein 4, and adiponectin concentrations in relation to the development of the metabolic syndrome in Korean boys: a 3-y prospective cohort study. Am J Clin Nutr 93, 1926.
17. Wu, LE, Samocha-Bonet, D, Whitworth, PT, et al. (2014) Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol Metab 3, 465473.
18. Corripio, R, Gonzalez-Clemente, JM, Perez-Sanchez, J, et al. (2010) Weight loss in prepubertal obese children is associated with a decrease in adipocyte fatty-acid-binding protein without changes in lipocalin-2: a 2-year longitudinal study. Eur J Endocrinol 163, 887893.
19. Canas, JA, Damaso, L, Altomare, A, et al. (2012) Insulin resistance and adiposity in relation to serum β-carotene levels. J Pediatr 161, 5864, e52.
20. Weyer, C, Bogardus, C, Mott, DM, et al. (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104, 787794.
21. Bresciani, L, Calani, L, Cossu, M, et al. (2015) (Poly)phenolic characterization of three food supplements containing 36 different fruits, vegetables and berries. PharmaNutrition 3, 1119.
22. Rosenbaum, M, Nonas, C, Horlick, M, et al. (2004) β-Cell function and insulin sensitivity in early adolescence: association with body fatness and family history of type 2 diabetes mellitus. J Clin Endocrinol Metab 89, 54695476.
23. Bjornson, LK, Kayden, HJ, Miller, E, et al. (1976) The transport of α-tocopherol and β-carotene in human blood. J Lipid Res 17, 343352.
24. Baessler, A, Lamounier-Zepter, V, Fenk, S, et al. (2014) Adipocyte fatty acid-binding protein levels are associated with left ventricular diastolic dysfunction in morbidly obese subjects. Nutr Diabetes 4, e106.
25. Oda, N, Imamura, S, Fujita, T, et al. (2008) The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 57, 268273.
26. Neuhouser, ML, Rock, CL, Eldridge, AL, et al. (2001) Serum concentrations of retinol, α-tocopherol and the carotenoids are influenced by diet, race and obesity in a sample of healthy adolescents. J Nutr 131, 21842191.
27. Burrows, TL, Warren, JM, Colyvas, K, et al. (2008) Validation of overweight children's fruit and vegetable intake using plasma carotenoids. Obesity 17, 162168.
28. Coe, NR, Simpson, MA & Bernlohr, DA (1999) Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 40, 967972.
29. Widjaja-Adhi, MA, Lobo, GP, Golczak, M, et al. (2015) A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Hum Mol Genet 24, 32063219.
30. Beydoun, MA, Nalls, MA, Canas, JA, et al. (2014) Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African-American adults. Br J Nutr 112, 9921003.
31. Lobo, GP, Amengual, J, Li, HN, et al. (2010) β,β-Carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β,β-carotene oxygenase 1-dependent manner. J Biol Chem 285, 2789127899.
32. Amengual, J, Gouranton, E, van Helden, YG, et al. (2011) β-Carotene reduces body adiposity of mice via BCMO1. PLoS ONE 6, e20644.
33. Garin-Shkolnik, T, Rudich, A, Hotamisligil, GS, et al. (2014) FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63, 900911.
34. Kim, G-S, Park, HJ, Woo, J-H, et al. (2012) Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement Altern Med 12, 31.
35. Hsu, C-L & Yen, G-C (2007) Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem 55, 84048410.
36. Lan, H, Cheng, CC, Kowalski, TJ, et al. (2011) Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity. J Lipid Res 52, 646656.
37. Furuhashi, M & Hotamisligil, GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7, 489503.
38. Boord, JB, Fazio, S & Linton, MF (2002) Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and atherosclerosis. Curr Opin Lipidol 13, 141147.
39. Bagheri, R, Qasim, AN, Mehta, NN, et al. (2010) Relation of plasma fatty acid binding proteins 4 and 5 with the metabolic syndrome, inflammation and coronary calcium in patients with type-2 diabetes mellitus. Am J Cardiol 106, 11181123.
40. Xu, A, Tso, AW, Cheung, BM, et al. (2007) Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 115, 15371543.
41. Ziouzenkova, O & Plutzky, J (2008) Retinoid metabolism and nuclear receptor responses: new insights into coordinated regulation of the PPAR–RXR complex. FEBS Lett 582, 3238.
42. Canas, J, Lochrie, A, Galena McGowan, A, et al. (2014) Effect of a 2-week intense life-style intervention followed by 6-month carotenoid supplementation on fat depots, adiponectin and palmitoleate: a 6-month double blind placebo-controlled pilot study in obese children (6451·316). FASEB J 28, Suppl. 1, 645.6.
43. Ruhl, R, Bub, A, Watzl, B (2008) Modulation of plasma all-trans retinoic acid concentrations by the consumption of carotenoid-rich vegetables. Nutrition 24, 12241226.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed