Skip to main content
×
×
Home

Protein quality of insects as potential ingredients for dog and cat foods*

  • Guido Bosch (a1), Sheng Zhang (a1), Dennis G. A. B. Oonincx (a2) and Wouter H. Hendriks (a1)
Abstract

Insects have been proposed as a high-quality, efficient and sustainable dietary protein source. The present study evaluated the protein quality of a selection of insect species. Insect substrates were housefly pupae, adult house cricket, yellow mealworm larvae, lesser mealworm larvae, Morio worm larvae, black soldier fly larvae and pupae, six spot roach, death's head cockroach and Argentinean cockroach. Reference substrates were poultry meat meal, fish meal and soyabean meal. Substrates were analysed for DM, N, crude fat, ash and amino acid (AA) contents and for in vitro digestibility of organic matter (OM) and N. The nutrient composition, AA scores as well as in vitro OM and N digestibility varied considerably between insect substrates. For the AA score, the first limiting AA for most substrates was the combined requirement for Met and Cys. The pupae of the housefly and black soldier fly were high in protein and had high AA scores but were less digestible than other insect substrates. The protein content and AA score of house crickets were high and similar to that of fish meal; however, in vitro N digestibility was higher. The cockroaches were relatively high in protein but the indispensable AA contents, AA scores and the in vitro digestibility values were relatively low. In addition to the indices of protein quality, other aspects such as efficiency of conversion of organic side streams, feasibility of mass-production, product safety and pet owner perception are important for future dog and cat food application of insects as alternative protein source.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Protein quality of insects as potential ingredients for dog and cat foods*
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Protein quality of insects as potential ingredients for dog and cat foods*
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Protein quality of insects as potential ingredients for dog and cat foods*
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution license .
Corresponding author
Corresponding author: G. Bosch, email guido.bosch@wur.nl
Footnotes
Hide All
*

This article was published as part of the WALTHAM International Nutritional Sciences Symposium Proceedings 2013.

Footnotes
References
Hide All
1. Boland, MJ, Rae, AN, Vereijken, JM, et al. (2013) The future supply of animal-derived protein for human consumption. Trends Food Sci Technol 29, 6273.
2. Van Huis, A, Van Itterbeeck, J, Klunder, H, et al. (2013) Edible Insects: Future Prospects for Food and Feed Security. Rome: Food and Agriculture Organization of the United Nations (FAO).
3. Rumpold, BA & Schlüter, OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57, 802823.
4. Van Huis, A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58, 563583.
5. Veldkamp, T, van Duinkerken, G, van Huis, A, et al. (2012) Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets: a Feasibility Study = Insecten als duurzame diervoedergrondstof in varkens- en pluimveevoeders: een haalbaarheidsstudie. Lelystad, The Netherlands: Wageningen UR Livestock Research.
6. Plantinga, EA, Bosch, G & Hendriks, WH (2011) Estimation of the dietary nutrient profile of free-roaming feral cats: possible implications for nutrition of domestic cats. Br J Nutr 106, S35S48.
7. Boisen, S & Fernández, JA (1997) Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim Feed Sci Technol 68, 277286.
8. Hervera, M, Baucells, MD, Blanch, F, et al. (2007) Prediction of digestible energy content of extruded dog food by in vitro analyses. J Anim Physiol Anim Nutr 91, 205209.
9. Jha, R, Bindelle, J, Van Kessel, A, et al. (2011) In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim Feed Sci Technol 165, 191200.
10. ISO (2005) Animal Feeding Stuffs – Determination of Content and Calculation of Crude Protein Content – Part 1: Kjeldahl Method (ISO 5983-1). Geneva, Switzerland: International Organization for Standardization.
11. ISO (1999) Animal Feeding Stuffs – Determination of Fat Content (ISO 6492). Geneva, Switzerland: International Organization for Standardization.
12. ISO (2005) Animal Feeding Stuffs – Determination of Amino Acids Content (ISO 13903). Geneva, Switzerland: International Organization for Standardization.
13. Kerr, KR, Beloshapka, AN, Morris, CL, et al. (2013) Evaluation of four raw meat diets using domestic cats, captive exotic felids, and cecectomized roosters. J Anim Sci 91, 225237.
14. NRC (2006) Nutrient Requirements of Dogs and Cats. Washington, DC, USA: National Academies Press.
15. Finke, MD (2013) Complete nutrient content of four species of feeder insects. Zoo Biol 32, 2736.
16. Newton, GL, Booram, CV, Barker, RW, et al. (1977) Dried Hermetia Illucens larvae meal as a supplement for swine. J Anim Sci 44, 395400.
17. St-Hilaire, S, Sheppard, C, Tomberlin, JK, et al. (2007) Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss . J World Aquac Soc 38, 5967.
18. Finke, MD (2007) Estimate of chitin in raw whole insects. Zoo Biol 26, 105115.
19. Ramos-Elorduy, J, González, EA, Hernández, AR, et al. (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95, 214220.
20. Clapper, GM, Grieshop, CM, Merchen, NR, et al. (2001) Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets. J Anim Sci 79, 15231532.
21. Johnson, ML, Parsons, CM, Fahey, GC Jr, et al. (1998) Effects of species raw material source, ash content, and processing temperature on amino acid digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J Anim Sci 76, 11121122.
22. Murray, SM, Patil, AR, Fahey, GC Jr, et al. (1997) Raw and rendered animal by-products as ingredients in dog diets. J Anim Sci 75, 24972505.
23. Pretorius, Q (2011) The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production. Master of Science, Stellenbosch University, Matieland, South Africa.
24. Rumpold, BA & Schlüter, OK (2013) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17, 111.
25. van der Spiegel, M, Noordam, MY & van der Fels-Klerx, HJ (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12, 662678.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed