Skip to main content
×
×
Home

Time and age trends in morning and evening protein intakes of German children and adolescents

  • Sarah Roßbach (a1), Tanja Diederichs (a1) (a2), Christian Herder (a3) (a4), Anette E. Buyken (a1) (a2) and Ute Alexy (a1)...
Abstract

The present study describes time and age trends in morning and evening protein intakes and sources among German children and adolescents from 1985 to 2014. A total of 9757 three-day weighed dietary records of 1246 3- to 18-year-old participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study were analysed using polynomial mixed-effects regression models. Morning protein intake increased over the study period by approximately 1 % of morning energy intake (linear trend P < 0·0001), with the youngest and the oldest children having the highest protein intake (linear, quadratic trend P < 0·0001). Evening protein intake increased over time by approximately 2 % of evening energy intake in girls (linear trend P < 0·0001) and 1 % of evening energy intake in boys (quadratic trend P = 0·0313), with decreasing intake with age (girls: linear trend P < 0·0001; boys: linear trend P = 0·0963). Time trends were largely due to increases in protein from ‘starchy foods’. In conclusion, morning and evening protein intakes increased modestly between 1985 and 2014; these increases were, however, not accompanied by increases in traditional protein sources (i.e. meat or dairy products).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Time and age trends in morning and evening protein intakes of German children and adolescents
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Time and age trends in morning and evening protein intakes of German children and adolescents
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Time and age trends in morning and evening protein intakes of German children and adolescents
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* Corresponding author: Ute Alexy, fax +49 231 71 15 81, email alexy@uni-bonn.de
References
Hide All
1. Simpson, SJ & Raubenheimer, D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6, 133142.
2. Rolland-Cachera, MF, Deheeger, M, Akrout, M, et al. (1995) Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. Int J Obes Relat Metab Disord 19, 573578.
3. Halton, TL & Hu, FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23, 373385.
4. Mann, J (2015) Macronutrients: requirements and distribution. World Rev Nutr Diet 111, 2429.
5. Leidy, HJ & Racki, EM (2010) The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes (Lond) 34, 11251133.
6. Baum, JI, Gray, M & Binns, A (2015) Breakfasts higher in protein increase postprandial energy expenditure, increase fat oxidation, and reduce hunger in overweight children from 8 to 12 years of age. J Nutr 145, 22292235.
7. Leidy, HJ, Bossingham, MJ, Mattes, RD, et al. (2009) Increased dietary protein consumed at breakfast leads to an initial and sustained feeling of fullness during energy restriction compared to other meal times. Br J Nutr 101, 798803.
8. Pape, D, Schwarz, R, Trunz-Carlisi, E, et al. (2006) Schlank im Schlaf (Lean in Sleep), 1st ed. Munich: Graeve and Unzer Publisher.
9. Noakes, M & Clifton, P (2005) The CSIRO Total Wellbeing Diet, 1st ed. Camberwell, VIC: Penguin.
10. Diederichs, T, Roßbach, S, Herder, C, et al. (2016) Relevance of morning and evening energy and macronutrient intake during childhood for body composition in early adolescence. Nutrients 8, 11.
11. Diederichs, T, Herder, C, Roßbach, S, et al. (2017) Carbohydrates from sources with a higher glycemic index during adolescence: is evening rather than morning intake relevant for risk markers of type 2 diabetes in young adulthood? Nutrients 9, 6.
12. Alexy, U, Sichert-Hellert, W & Kersting, M (2002) Fifteen-year time trends in energy and macronutrient intake in German children and adolescents: results of the DONALD study. Br J Nutr 87, 595604.
13. Libuda, L, Alexy, U & Kersting, M (2014) Time trends in dietary fat intake in a sample of German children and adolescents between 2000 and 2010: not quantity, but quality is the issue. Br J Nutr 111, 141150.
14. Kroke, A, Manz, F, Kersting, M, et al. (2004) The DONALD study. History, current status and future perspectives. Eur J Nutr 43, 4554.
15. Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
16. Cole, TJ, Flegal, KM, Nicholls, D, et al. (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335, 194.
17. Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, 541.
18. Deutsche Gesellschaft, für Ernährung, Österreichische, Gesellschaft für Ernährung, Schweizerische, Gesellschaft für Ernährungsforschung & Schweizerische, Vereinigung für Ernährung (D-A-CH) (eds.) (2015) Referenzwerte für die Nährstoffzufuhr, 2nd ed. Neustadt an der Weinstraße: Neuer Umschau Buchverlag.
19. Nicklas, TA, Elkasabany, A, Srinivasan, SR, et al. (2001) Trends in nutrient intake of 10-year-old children over two decades (1973–1994): the Bogalusa Heart Study. Am J Epidemiol 153, 969977.
20. Nicklas, TA, Demory-Luce, D, Yang, S-J, et al. (2004) Children's food consumption patterns have changed over two decades (1973–1994): the Bogalusa Heart Study. J Am Diet Assoc 104, 11271140.
21. Cheng, G, Libuda, L, Karaolis-Danckert, N, et al. (2010) Trends in dietary carbohydrate quality during puberty from 1988 to 2007: a cause for concern? Br J Nutr 104, 13751383.
22. Buyken, AE, Mitchell, P, Ceriello, A, et al. (2010) Optimal dietary approaches for prevention of type 2 diabetes: a life-course perspective. Diabetologia 53, 406418.
23. Richter, CK, Skulas-Ray, AC, Champagne, CM, et al. (2015) Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Adv Nutr 6, 712728.
24. Lu, L, Xun, P, Wan, Y, et al. (2016) Long-term association between dairy consumption and risk of childhood obesity: a systematic review and meta-analysis of prospective cohort studies. Eur J Clin Nutr 70, 414423.
25. Lovegrove, JA & Givens, DI (2016) Dairy food products: good or bad for cardiometabolic disease? Nutr Res Rev 29, 249267.
26. McGregor, RA & Poppitt, SD (2013) Milk protein for improved metabolic health: a review of the evidence. Nutr Metab 10, 46.
27. Livingstone, MBE, Robson, PJ & Wallace, JMW (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92, Suppl. 2, 213222.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Roßbach et al. supplementary material
Table S1

 Word (27 KB)
27 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed