Skip to main content Accessibility help
×
×
Home

Urinary excretion of B-group vitamins reflects the nutritional status of B-group vitamins in rats

  • Katsumi Shibata (a1), Chisa Sugita (a1), Mitsue Sano (a1) and Tsutomu Fukuwatari (a1)
Abstract

We have reported previously that the urinary excretion of B-group vitamins reflects recent dietary intakes of these vitamins. We also proposed reference values for the urinary levels of B-group vitamins for human subjects, and used these for evaluating human nutritional status. However, the question arises as to whether the urinary excretion of B-group vitamins in animals or human subjects decreases immediately before they become B-group vitamin insufficient or when fed a diet low in vitamins. In the present study, rats were fed a vitamin-free diet for 5 d, and changes in the levels of B-group vitamins in urine and blood were monitored. Urinary excretion of vitamin B1, vitamin B2, 4-pyridoxic acid (a catabolite of vitamin B6), pantothenic acid, folate and biotin steeply decreased, and all of the values reached zero within 1–2 d. With respect to blood, the concentrations of only three of the eight B-group vitamins (vitamin B1, pyridoxal phosphate and biotin) decreased to 15 % (P < 0·0001), 7 % (P < 0·0001) and 2 % (P < 0·0001) on day 5, respectively, compared with the values at the beginning of the experiment. The decrease was more rapid and the changes were greater in the urine samples than in the blood samples. The present data complement our previous proposal that the urinary excretion of B-group vitamins reflects the nutritional status of these vitamins.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Urinary excretion of B-group vitamins reflects the nutritional status of B-group vitamins in rats
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Urinary excretion of B-group vitamins reflects the nutritional status of B-group vitamins in rats
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Urinary excretion of B-group vitamins reflects the nutritional status of B-group vitamins in rats
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
* Corresponding author: K. Shibata, fax +81 749 28 8499, email kshibata@shc.usp.ac.jp
References
Hide All
1. Food and Nutrition Board, Institute of Medicine (1998) Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press.
2. Food and Nutrition Board, Institute of Medicine (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids [Institute of Medicine, editor]. Washington, DC: National Academy Press.
3. Ministry of Health, Labour and Welfare (2009) Dietary Reference Intakes for Japanese, 2010. Tokyo.
4. Boni, L, Kiechens, L & Hendrikx, A (1980) An evaluation of a modified erythrocyte transketolase assay for assessing thiamin nutritional adequacy. J Nutr Sci Vitaminol 25, 507514.
5. Sauberlich, HE (1984) Newer laboratory methods for assessing nutriture of selected B-complex vitamins. Annu Rev Nutr 4, 377407.
6. Kretsch, MJ, Sauberlich, HE, Skala, JH, et al. (1995) Vitamin B-6 requirement and status assessment: young women fed a depletion diet followed by a plant- or animal-protein diet with graded amounts of vitamin B-6. Am J Clin Nutr 61, 10911101.
7. Sauberlich, HE, Herman, YE, Stevens, CO, et al. (1979) Thiamin requirement of the adult human. Am J Clin Nutr 32, 22372248.
8. Tillotson, JA & Baker, EM (1972) An enzymatic measurement of the riboflavin status in man. Am J Clin Nutr 25, 425431.
9. O'Neal, RM, Johnson, OC & Schaefer, AE (1970) Guidelines for classification and interpretation of group blood and urine data collected as part of the National Nutrition Survey. Pediatr Res 4, 103106.
10. Horwitt, MK, Harvey, CC, Hills, OW, et al. (1950) Correlation of urinary excretion of riboflavin with dietary intake and symptoms of ariboflavinosis. J Nutr 41, 247264.
11. Goldsmith, GA, Sarett, HP, Register, UD, et al. (1952) Studies of niacin requirement in man. I. Experimental pellagra in subjects on corn diets low in niacin and tryptophan. J Clin Invest 31, 533542.
12. Fox, HM & Linkswiler, H (1961) Pantothenic acid excretion on three levels of intake. J Nutr 75, 451454.
13. Fry, PC, Fox, HM & Tao, HG (1976) Metabolic response to a pantothenic acid deficient diet in humans. J Nutr Sci Vitaminol 22, 339346.
14. Shibata, K, Fukuwatari, T, Ohta, M, et al. (2005) Values of water-soluble vitamins in blood and urine of Japanese young men and women consuming a semi-purified diet based on the Japanese Dietary Reference Intakes. J Nutr Sci Vitaminol 51, 319328.
15. Fukuwatari, T & Shibata, K (2008) Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women. J Nutr Sci Vitaminol 54, 223229.
16. Fukuwatari, T, Yoshida, E, Takahashi, K, et al. (2010) Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats. J Nutr Sci Vitaminol 56, 1926.
17. Tsuji, T, Fukuwatari, T, Sasaki, S, et al. (2010) Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese. Nutr Res 30, 171178.
18. Tsuji, T, Fukuwatari, T, Sasaki, S, et al. (2010) Twenty-four-hour urinary water-soluble vitamins correlate to vitamin intakes in free-living Japanese university students. Eur J Clin Nutr 64, 800807.
19. Tsuji, T, Fukuwatari, T, Sasaki, S, et al. (2011) Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese schoolchildren. Public Health Nutr 14, 327333.
20. Imai, E, Tsuji, T, Sano, M, et al. (2011) Association between 24 h urinary alpha-tocopherol catabolite, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and alpha-tocopherol intake in intervention and cross-sectional studies. Asia Pac J Clin Nutr 20, 507513.
21. Shibata, K, Fukuwatari, T & Yoshida, M (2011) Vitamins and microminerals. Nutr-Assess Treat 28, 143147.
22. Eissenstat, BR, Wyse, BW & Hansen, RG (1986) Pantothenic acid status of adolescents. Am J Clin Nutr 44, 931937.
23. Schster, K, Bailey, LB, Cerda, JJ, et al. (1984) Urinary 4-pyridoxic acid excretion in 24-hour versus random urine samples as a measurement of vitamin B6 status in humans. Am J Clin Nutr 39, 466470.
24. Wolfe, JM, Bailey, LB, Herrlinger-Garcia, K, et al. (2003) Folate catabolite excretion is responsive to changes in dietary folate intake in elderly women. Am J Clin Nutr 77, 919923.
25. Tasevska, N, Runswick, SA, McTaggart, A, et al. (2007) Twenty-four-hour urinary thiamine as a biomarker for the assessment of thiamine intake. Eur J Clin Nutr 62, 11391147.
26. Chang, SJ, Hsiao, LJ, Lee, YC, et al. (2007) Vitamin B6 status assessment in relation to dietary intake in high school students aged 16–18 years. Br J Nutr 97, 764769.
27. Kim, HA & Lim, HS (2008) Dietary folate intake, blood folate status, and urinary folate catabolite excretion in Korean women of childbearing age. J Nutr Sci Vitaminol 54, 291297.
28. Reeves, PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127, 838S841S.
29. Pullman, ME & Colowick, SP (1954) Preparation of 2- and 6-pyridones of N 1-methylnicotinamide. J Biol Chem 206, 121127.
30. Shibata, K, Kawada, T & Iwai, K (1988) Simultaneous micro-determination of nicotinamide and its major metabolites, N 1-methyl-2-pyridone-5-carboxamide and N 1-methyl-3-pyridone-4-carboxamide, by high-performance liquid chromatography. J Chromatogr 424, 2328.
31. Fukuwatari, T, Wada, H & Shibata, K (2008) Age-related alterations of B-group vitamin contents in urine, blood and liver from rats. J Nutr Sci Vitaminol 54, 357362.
32. Gregory, JF III & Kirk, JR (1979) Determination of urinary 4-pyridoxic acid using high performance liquid chromatography. Am J Clin Nutr 32, 879883.
33. Fukuwatari, T, Suzuura, C, Sasaki, R, et al. (2004) Action site of bisphenol A as metabolic disruptor lies in the tryptophan-nicotinamide conversion pathway. J Food Hyg Soc Jpn 45, 231238.
34. Ohkawa, H, Ohishi, N & Yagi, K (1982) A simple method for micro-determination of flavin in human serum and whole blood by high-performance liquid chromatography. Biochem Int 4, 18711894.
35. AOAC International (1995) Official Methods of Analysis, 16th ed. Arlington, VA: AOAC International.
36. Watanabe, F, Abe, K, Katsura, H, et al. (1998) Biological activity of hydroxo-vitamin B12 degradation product formed during microwave heating. J Agric Food Chem 46, 51775180.
37. Skeggs, H & Wright, LD (1944) The use of Lactobacillus arabinosus in the microbiological determination of pantothenic acid. J Biol Chem 156, 2126.
38. Aiso, K & Tamura, T (1998) Trienzyme treatment for food folate analysis. Optimal pH and incubation time for α-amylase and protease treatment. J Nutr Sci Vitaminol 44, 361370.
39. Fukui, T, Iinuma, K, Oizumi, J, et al. (1994) Agar plate method using Lactobacillus plantarum for biotin determination in serum and urine. J Nutr Sci Vitaminol 40, 491498.
40. Shinton, NK (1972) Vitamin B12 and folate metabolism. Br Med J i, 556559.
41. Fukuwatari, T & Shibata, K (2012) Urinary water-soluble vitamins as nutritional biomarker to estimate their intake. In Biomarker [Khan, T, editor]. Rijeka, Croatia: InTech.
42. Shibata, K, Mitsue, S & Fukuwatari, T (2012) The association between the intakes of B-group vitamins and the contents of those vitamins in the body and the urine. Vitamins 86, 303308.
43. Shibata, K, Shimada, H & Kondo, T (1996) Effects of feeding tryptophan-limiting diets on the conversion ratio of tryptophan to niacin in rats. Biosci Biotechnol Biochem 60, 16601666.
44. Shibata, K & Matsuo, H (1989) Effects of gradually increasing levels of nicotinamide in a niacin-free and tryptophan-limited diet on the blood NAD levels and the urinary excretion of nicotinamide metabolites in rats. Agric Biol Chem 53, 13331336.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed