Skip to main content Accessibility help
×
×
Home

Why did the dinosaurs become extinct? Could cholecalciferol (vitamin D3) deficiency be the answer?

  • D. R. Fraser (a1)
Abstract

Palaeontological deductions from the fossil remnants of extinct dinosaurs tell us much about their classification into species as well as about their physiological and behavioural characteristics. Geological evidence indicates that dinosaurs became extinct at the boundary between the Cretaceous and Paleogene eras, about 66 million years ago, at a time when there was worldwide environmental change resulting from the impact of a large celestial object with the Earth and/or from vast volcanic eruptions. However, apart from the presumption that climate change and interference with food supply contributed to their extinction, no biological mechanism has been suggested to explain why such a diverse range of terrestrial vertebrates ceased to exist. One of perhaps several contributing mechanisms comes by extrapolating from the physiology of the avian descendants of dinosaurs. This raises the possibility that cholecalciferol (vitamin D3) deficiency of developing embryos in dinosaur eggs could have caused their death before hatching, thus extinguishing the entire family of dinosaurs through failure to reproduce.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Why did the dinosaurs become extinct? Could cholecalciferol (vitamin D3) deficiency be the answer?
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Why did the dinosaurs become extinct? Could cholecalciferol (vitamin D3) deficiency be the answer?
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Why did the dinosaurs become extinct? Could cholecalciferol (vitamin D3) deficiency be the answer?
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author: D. R. Fraser, email david.fraser@sydney.edu.au
References
Hide All
1.Alverez, W, Alverez, LW, Asaro, F, et al. (1984) The end of the Cretaceous: sharp boundary or gradual transition? Science 223, 11831186.
2.Alvarez, LW, Alvarez, W, Asaro, F, et al. (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 10951108.
3.Ganapathy, R (1980) A major meteorite impact on the Earth 65 million years ago. Evidence from the Cretaceous–Tertiary boundary clay. Science 209, 921923.
4.Smit, J & Hertogen, J (1980) An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285, 198200.
5.Hildebrand, AR, Pilkington, M, Connore, M, et al. (1995) Size and structure of Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 376, 415417.
6.Sarjeant, WA & Currie, PJ (2001) The “Great Extinction” that never happened: the demise of the dinosaurs considered. Can J Earth Sci 38, 239247.
7.Sakamoto, M, Benton, MJ & Venditti, C (2016) Dinosaurs in decline tens of millions of years before their final extinction. Proc Nat Acad Sci 113, 50365040.
8.Brusatte, SL, Butler, RJ, Barrett, PM, et al. (2015) The extinction of the dinosaurs. Biol Rev Camb Philos Soc 90, 628642.
9.Vellekoop, J, Sluijs, A, Smit, J, et al. (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc Nat Acad Sci 111, 75377541.
10.Pierazzo, E, Kring, DA & Melosh, HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103, 28,60728,625.
11.Kaiho, K & Oshima, N (2017) Site of asteroid impact changed the history of life on Earth: the low probability of mass extinction. Sci Rep 7, 14855.
12.Kaiho, K, Oshima, N, Adachi, K, et al. (2016) Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction. Sci Rep 6, 28427.
13.Pope, KO, Baines, KH, Ocampo, AC, et al. (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102, 21,64521,664.
14.Krueger, AJ, Walter, LS, Bhartia, PK, et al. (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J Geophys Res 100, 1405714076.
15.Keller, G, Sahni, A & Bajpai, S (2009) Deccan volcanism, the KT mass extinction and dinosaurs. J Biosci 34, 709728.
16.Richards, MA, Alvarez, W, Self, S, et al. (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull 127, 15071520.
17.Chenet, A-L, Fluteau, F, Courtillot, V, et al. (2008) Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variations: results from a 1200-m-thick section in the Mahabaleshwar escarpment. J Geophys Res 113, B04101.
18.Kerr, JB & Fioletov, VE (2008) Surface ultraviolet radiation. Atmos Ocean 46, 159184.
19.Fioletov, VE, Griffioen, E, Kerr, JB, et al. (1998) Influence of volcanic sulfur dioxide on spectral UV irradiance as measured by Brewer spectrophotometers. Geophys Res Lett 25, 16651668.
20.Zerefos, CS, Mantis, HT, Bais, AF, et al. (1986) Solar ultraviolet absorption by sulphur dioxide in Thessaloniki, Greece. Atmos Ocean 24, 292300.
21.Branion, HD & Smith, JB (1932) The influence of vitamin D on hatchability and egg production. Poult Sci 11, 261265.
22.Sunde, MI, Turk, CM & DeLuca, HF (1978) The essentiality of vitamin D metabolites for embryonic chick development. Science 200, 10671069.
23.Stevens, VI, Blair, R, Salmon, RE, et al. (1984) Effect of varying levels of dietary vitamin D3 on turkey hen egg production, fertility and hatchability, embryo mortality and incidence of embryo beak malformations. Poult Sci 63, 760764.
24.Narbaitz, R, Tsang, CP & Grunder, AA (1987) Effects of vitamin D deficiency in the chicken embryo. Calcif Tissue Res 40, 109113.
25.Henry, HL & Norman, AW (1978) Vitamin D: two dihydroxylated metabolites required for normal chicken egg hatchability. Science 201, 835837.
26.Fraser, DR & Emtage, JS (1976) Vitamin D in the avian egg: its molecular identity and mechanism of incorporation into yolk. Biochem J 160, 671682.
27.Carpenter, K (1999) Eggs, Nests, and Baby Dinosaurs. A Look at Dinosaur Reproduction. Bloomington, IN: Indiana University Press.
28.Erben, HK, Hoefs, J & Wedepohl, KH (1979) Paleobiological and isotopic studies of eggshells from a declining dinosaur species. Paleobiology 5, 380414.
29.Narbaitz, R, Tsang, CP, Grunder, AA, et al. (1987) Scanning electron microscopy of thin and soft shells induced by feeding calcium-deficient or vitamin D-deficient diets to laying hens. Poult Sci 66, 341347.
30.Lee, SA (2016) Incubation times of dinosaur eggs via embryonic metabolism. Phys Rev E 94, 022402.
31.Erickson, GM, Zelenitsky, DK, Kay, DI, et al. (2016) Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development. Proc Nat Acad Sci 114, 540545.
32.Varricchio, DJ, Kundrat, M & Hogan, J (2018) An intermediate incubation period and primitive brooding in a theropod dinosaur. Sci Rep 8, 12454.
33.Maor, R, Dayan, T, Ferguson-Gow, H, et al. (2017) Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat Ecol Evol 1, 18891895.
34.Vickers-Rich, P & Rich, TH (1993) Australia's polar dinosaurs. Sci Am 269, 5055.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed