Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T20:12:56.069Z Has data issue: false hasContentIssue false

Asian Paleocene charophyte records demonstrate Eocene dispersals from Asia to Europe

Published online by Cambridge University Press:  31 January 2022

Wenxin Cao
Affiliation:
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China , , , CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039, China
Sha Li*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
Qiang Li
Affiliation:
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China , , , CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China University of the Chinese Academy of Sciences, Beijing 100049, China
Thomas A. Stidham
Affiliation:
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China , , , CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China University of the Chinese Academy of Sciences, Beijing 100049, China
Xiaoqiao Wan
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Xijun Ni*
Affiliation:
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China , , , CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China University of the Chinese Academy of Sciences, Beijing 100049, China CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100104, China
*
*Corresponding author.
*Corresponding author.

Abstract

A latest Paleocene charophyte flora collected from the South Gobi area in the Junggar Basin, western China, includes the geographically widespread taxa Peckichara torulosa var. varians (Dollfus and Fritel, 1919) Sanjuan, Vicente, and Eaton, 2020, Lychnothmanus vectensis (Groves, 1926) Soulié-Märsche, 1989, and Gyrogona lemani capitata Grambast and Grambast-Fessard, 1981. Lychnothmanus vectensis (as Lychnothmanus aff. L. vectensis) is known from the Cretaceous–Paleocene transition in eastern China and the latest Paleocene in western China, with likely additional records from the United States (Utah). The earliest European records of L. vectensis are from the late Eocene to early Oligocene in Spain, France, and England. Similarly, the oldest record of G. lemani capitata is from the latest Paleocene in the South Gobi area, with younger records from the middle Eocene of France. These latest Paleocene gyrogonite assemblages demonstrate the origin of these charophyte lineages in Asia. The dispersal of these charophytes from Asia to Europe in the middle to late Eocene appears to have occurred before the retreat of the Turgai Strait in both the Tarim area and the Siberian Basin by the end of the late Eocene and before the “Grande Coupure” in Europe and the Mongolian Remodelling in Asia during the Eocene–Oligocene transition. We hypothesize that waterbirds may have facilitated this intercontinental dispersal, and that idea is supported by the shared occurrence of avian groups in Central Asia and Europe in the middle and late Eocene.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Wenxin Cao and Sha Li contributed equally to this work.

References

Agardh, C.A., 1824, Systema Algarum: Lundæ, Literis Berlingianis, 312 p.Google Scholar
Allouche, L., Roux, P., and Tamisier, A., 1988, Position trophique des nettes rousses (Netta rufina, Pallas) hivernant en Camargue: Revue d'écologie-la terre et la vie, v. 43, p. 167175.Google Scholar
Bhatia, S.B., 2006, Ecological parameters and dispersal routes of Lychnothamnus barbatus (Characeae) in the early–middle Holocene from the Ganga plain, India, Cryptogamie: Algologie, v. 27, p. 341356.Google Scholar
Bosboom, R., Mandic, O., Dupont-Nivet, G., Proust, J.-N., Ormukov, C., and Aminov, J., 2017, Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan): Geological Society, London, Special Publications, v. 427, p. 565588.CrossRefGoogle Scholar
Braun, A., and Nordstedt, C.F.O., 1882, Fragmente einer Monographie der Characeen: Berlin, Königlichen Akademie der Wissenschaften, 211 p.Google Scholar
Brongniart, A., 1822, Sur la classification et la distribution des végétaux fossiles en général, et sur ceux des terrains de sediment supérieur en particulier: Mémoires du Muséum d'histoire naturelle Paris, 91 p.Google Scholar
Dollfus, G.F., and Fritel, P.H., 1919, Catalogue raisonné des characées fossiles du Bassin de Paris: Bulletin de la Societé Géologique de France, v. 19, p. 243261.Google Scholar
Grambast, L., 1956, Le genre Gyrogona Lmk (Characeae): Comptes rendus sommaires des Séances de la Société Géologique de France, v. 14, p. 278280.Google Scholar
Grambast, L., 1957, Ornementation de la gyrogonite et systématique chez les Charophytes fossiles: Revue générale de Botanique, v. 64, p. 339362.Google Scholar
Grambast, L., 1958, Etude sur les Charophytes Tertiaires d'Europe Occidentale et leurs rapports avec les formes actuelles [Ph.D. thesis]: Paris, Paris University, 258 p.Google Scholar
Grambast, L., 1971, Remarques phylogénétiques et biocronologiques sur les Septorella du Crétacé terminal de Provence et les charophytes associés: Paléobiologie Cont, v. 2, p. 138.Google Scholar
Grambast, L., and Grambast-Fessard, N., 1981, Étude sur les Charophytes tertiaires d'Europe occidentale. III. Le genre Gyrogona: Paléobiologie Continentale, v. 12, no. 2, p. 135.Google Scholar
Grambast, L., and Paul, P., 1965, Observations nouvelles sur la flore de charophytes du Stampien du bassin de Paris: Bulletin de la Société Géologique de France, v. 7, p. 239247.Google Scholar
Grambast, L., and SouliéMärsche, I., 1972, Sur l'ancienneté et la diversifcation des Nitellopsis (Charophytes): Paléobiologie Continentale, v. 3, p. 114.Google Scholar
Groves, J., 1919, Notes on Lychnothamnus Braun, Journal of Botany, London v. 57, p. 125129.Google Scholar
Groves, J., 1926, Charophyta, in Reid, E.M., and Chandler, M.E.J., eds., Catalogue of Cainozoic plants in the Department of Geology, Volume 1, The Bembridge flora: London, The British Museum (Natural History), p. 165173.Google Scholar
Joyce, W., and Rabi, M., 2015, A revised global biogeography of turtles: PeerJ Preprints, https://doi.org/10.7287/peerj.preprints.853v1Google Scholar
Lamarck, J.B., 1804, Suite des mémoires sur les fossiles des environs de Paris: Annales du Muséum d'histoire naturelle, v. 5, p. 349357.Google Scholar
Lamarck, J.B., 1822, Histoire Naturelle des Animaux sans Vertèbres: Paris, Verdière, 711 p.Google Scholar
Li, S., Wang, Q.F., Zhang, H.C., Lu, H.N., and Martín-Closas, C., 2016, Charophytes from the Cretaceous–Paleogene transition in the Pingyi Basin (eastern China) and their Eurasian correlation: Cretaceous Research, v. 59, p. 179200.Google Scholar
Li, S., Wang, Q.F., Zhang, H.C., Wan, X.Q., and Martín-Closas, C., 2019, Charophytes from the Cretaceous–Paleocene boundary in the Songliao Basin (north-eastern China): a Chinese biozonation and its calibration to the Geomagnetic Polarity Time Scale: Papers in Palaeontology, v. 5, p. 4781.Google Scholar
Li, S., Wang, Q., Cui, Q., Zhang, S., Wang, H., and Zhang, H., 2020, Eocene charophyte flora from the Xia Ganchaigou Formation in Zongmahai Lake area, Qaidam Basin, northwest China: Acta Palaeontologica Sinica, v. 59, p. 327337. [in Chinese with English abstract]CrossRefGoogle Scholar
Lindley, J., 1836, A Natural System of Botany, or, a systematic view of the organization, natural affinities, and geographical distribution, of the whole vegetable kingdom: together with the uses of the most important species in medicine, the arts, and rural or domestic economy: London, Longman, Rees, Orme, Brown, Green, and Longman, 558 p.Google Scholar
Linnaeus, C., 1758, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (tenth edition), v. 1: Stockholm, L. Salvii, 823 p.Google Scholar
Loiseleur Deslongschamps, J.L.A., 1810, Notice sur les plantes à ajouter à la flore de France (Flora Gallica) avec quelques corrections et observations: Paris, J.B. Sajou, 172 p.CrossRefGoogle Scholar
Martin, T., and Averianov, A.O., 2004, A new docodont (Mammalia) from the Middle Jurassic of Kyrgyzstan, Central Asia: Journal of Vertebrate Paleontology, v. 24, p. 195201.CrossRefGoogle Scholar
Martín-Closas, C., and Wang, Q.F., 2008, Historical biogeography of the lineage Atopochara trivolvis Peck 1941 (Cretaceous Charophyta): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 435451.CrossRefGoogle Scholar
Matthew, W.D., and Granger, W., 1925, Fauna and correlation of the Gashato Formation of Mongolia: American Museum Novitates, v. 189, p. 112.Google Scholar
McKenna, M.C., 1975, Fossil mammals and early Eocene North Atlantic Land Continuity: Annals of the Missouri Botanical Garden, v. 62, p. 335353.CrossRefGoogle Scholar
Meng, J., and Wyss, A.R., 2001, The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires: Journal of Mammalian Evolution, v. 8, p. 171.CrossRefGoogle Scholar
Meng, J., Ni, X., Li, C., Beard, K.C., Gebo, D.L., Wang, Y., and Wang, H., 2007, New material of Alagomyidae (Mammalia, Glires) from the late Paleocene Subeng locality, inner Mongolia: American Museum Novitates, v. 3597, p. 129.CrossRefGoogle Scholar
Meyen, F.J.F., 1827, Beobachtungen und Bemerkungen über die Gattung Chara: Linnaea, v. 2, p. 5581.Google Scholar
Migula, W., 1897, Die Characeen, in Rabenhorst, G.L., ed., Kryptogamen-flora von Deutschland, Osterreichs und der Schweiz: Leipzig, Edword Kummer, p. 18901897.Google Scholar
Missiaen, P., and Smith, T., 2005, A new nyctitheriid insectivore from Inner Mongolia (China) and its implications for the origin of the Asian nyctitheriids: Acta Palaeontologica Polonica, v. 50, p. 513522.Google Scholar
Missiaen, P., and Smith, T., 2008, The Gashatan (late Paleocene) mammal fauna from Subeng, Inner Mongolia, China: Acta Palaeontologica Polonica, v. 53, p. 357378.Google Scholar
Ni, X., Li, Q., Stidham, T.A., Li, L., Lu, X., and Meng, J., 2016, A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction: Scientific Reports, v. 6, art. 38547.Google ScholarPubMed
Pallas, P.S., 1773, Reise durch verschiedene Provinzen des russischen Reichs: St. Petersburg, Gedruckt bey Kayserlichen Academie der Wissenschaften.Google Scholar
Peck, R.E., 1941, Lower Cretaceous Rocky Mountain non marine microfossils: Journal of Paleontology, v. 15, p. 285304.Google Scholar
Pia, J., 1927, Thallophyta, in Hirmer, M., ed., Handbuch der Paläobotanik, v. 1: München, R. Oldenbourg Druck und Verlag, p. 31136.Google Scholar
Proctor, V.W., 1959, Dispersal of fresh-water algae by migratory water birds: Science, v. 130, p. 623624.CrossRefGoogle ScholarPubMed
Proctor, V.W., 1962, Viability of Chara oospores taken from migratory water birds: Ecology, v. 43, p. 528529.CrossRefGoogle Scholar
Proctor, V.W., 1980, Historical biogeography of Chara (Charophyta): an appraisal of the braun-wood classification plus a falsifiable alternative for future consideration: Journal of Phycology, v. 16, p. 218233.Google Scholar
Proctor, V.W., Malone, C.R., and DeVlaming, V.L., 1967, Dispersal of aquatic organisms: viability of disseminules recovered from the intestinal tract of captive killdeer: Ecology, v. 48, p. 672676.CrossRefGoogle Scholar
Riveline, J., 1986, Les Charophytes du Paléogene et du Miocène Inférieur d'Europe Occidentale: Paris, Centre National de la Recherche Scientifique, 304 p.Google Scholar
Ruprecht, F.J., 1845, Distributio Cryptogarum Vascularum in Imperio Rossico, Beiträge zur Pflanzenkunde des Russischen Reiches, fasc. 3: St. Petersburg, Kaiserlichen Academie der Wissenschaften, 56 p.Google Scholar
Sanjuan, J., and Martín-Closas, C., 2014, Taxonomy and palaeobiogeography of charophytes from the upper Eocene–lower Oligocene of the Eastern Ebro Basin (Catalonia, NE Spain): Geodiversitas, v. 36, p. 385420.Google Scholar
Sanjuan, J., and Martín-Closas, C., 2015a, Biogeographic history of two Eurasian Cenozoic charophyte lineages: Aquatic Botany, v. 120, p. 1830.Google Scholar
Sanjuan, J., and Martin-Closas, C., 2015b, Gyrogonite polymorphism in two European charophyte biozone index species: Papers in Palaeontology, v. 1, p. 114.CrossRefGoogle Scholar
Sanjuan, J., Vicente, A., and Eaton, J.G., 2020, New charophyte flora from the Pine Hollow and Claron formations (southwestern Utah). Taxonomic, biostratigraphic, and paleobiogeographic implications: Review of Palaeobotany and Palynology, v. 282, art. 104289.Google Scholar
Smith, G.M., 1938, Algae and Fungi: Charophyceae. Cryptogamic Botany, v. 1: New York, McGraw Hill, 545 p.Google Scholar
Smith, T., Van Itterbeeck, J., and Missiaen, P., 2004, Oldest plesiadapiform (Mammalia, Proprimates) of Asia and its paleobiogeographical implications for faunal interchange with North America: Comptes Rendus Palevol, v. 3, p. 4352.Google Scholar
Soulié-Märsche, I., 1989, Etude comparée de gyrogonites de charophytes actuelles et fossiles et phylogénie des genres actuels: Millau, France, Imprimerie des Tilleuls, 237 p.Google Scholar
Stidham, T.A., and Ni., X., 2014, Large anseriform (Aves: Anseriformes: Romainvilliinae?) fossils from the late Eocene of Xinjiang, China: Vertebrata PalAsiatica, v. 52, p. 98111.Google Scholar
Stidham, T.A., and Smith, N.A., 2015, An ameghinornithid-like bird (Aves, Cariamae, ?Ameghinornithidae) from the early Oligocene of Egypt: Palaeontologia Electronica, v. 18.1.5A, 8 p., https://palaeo-electronica.org/content/pdfs/470.pdfGoogle Scholar
Stidham, T.A., and Wang, Y., 2017, An ameghinornithid-like bird (Aves: Cariamae: Ameghinornithidae?) from the middle Eocene of Nei Mongol, China: Vertebrata PalAsiatica, v. 55, p. 218226.Google Scholar
Stidham, T.A., Townsend, K.E., and Holroyd, P.A., 2020, Evidence for wide dispersal in a stem galliform clade from a new small-sized middle Eocene pangalliform (Aves: Paraortygidae) from the Uinta Basin of Utah (USA): Diversity, v. 12, article 90.CrossRefGoogle Scholar
Tamisier, A., 1971, Régime alimentaire des sarcelles d'hiver Anas crecca en Camargue: Alauda, v. 39, p. 261311.Google Scholar
Tang, W., Zhang, Y., Pe-Piper, G., Piper, D.J.W., Guo, Z., and Li, W., 2020, Soft–sediment deformation structures in alkaline lake deposits of lower Permian Fengcheng Formation, Junggar Basin, NW China: implications for syn–sedimentary tectonic activity: Sedimentary Geology, v. 406, art. 105719.CrossRefGoogle Scholar
Trabelsi, K., Sames, B., Salmouna, A., Piovesan, E. K., Rouina, S.B., Houla, Y., Touir, J., and Soussi, M., 2015, Ostracods from the marginal coastal Lower Cretaceous (Aptian) of the Central Tunisian Atlas (North Africa): paleoenvironment, biostratigraphy and paleobiogeography: Revue de Micropaléontologie, v. 58, p. 309331.CrossRefGoogle Scholar
Unger, F., 1852, Iconographia plantarum fossilium: Denkschriften Akademie der Wissenschaften, Mathematisch-Naturwissenchaftliche Klasse, Wien, v. 4, p. 73118.Google Scholar
Vicente, A., and Martín-Closas, C., 2018, Gradualistic characean lineages in the Upper Cretaceous–Palaeocene of Southern Europe: Historical Biology, v. 30, p. 593607.Google Scholar
Vicente, A., Sanjuan, J. Eaton, J.G., and Villanueva-Amadoz, U., 2020, The oldest record of North American Lychnothamnus (northeastern Sonora, Mexico): implications for the evolution, ecology, and paleogeographic distribution of the genus: Aquatic Botany, v. 167, art. 103271.Google Scholar
von Leonhardi, H.F., 1863, Über die böhmischen Characeen: Lotos, v. 13, p. 5562.Google Scholar
Wang, Y.Q., Meng, J., Ni, X.J., and Beard, K.C., 2008, A new early Eocene arctostylopid (Arctostylopida, Mammalia) from the Erlian Basin, Nei Mongol (Inner Mongolia), China: Journal of Vertebrate Paleontology, v. 28, p. 553558.CrossRefGoogle Scholar