Hostname: page-component-76dd75c94c-h9cmj Total loading time: 0 Render date: 2024-04-30T07:19:17.364Z Has data issue: false hasContentIssue false

Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman, British West Indies

Published online by Cambridge University Press:  02 September 2016

S. M. Pleydell
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada
Brian Jones
Affiliation:
Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada

Abstract

Molds of corals, bivalves, and gastropods in the Oligocene–Miocene Bluff Formation of Grand Cayman Island contain casts of Entobia (nine ichnospecies including the new ichnospecies E. dendritica), Trypanites (three ichnospecies), Gastrochaenolites (two ichnospecies), Maeandropolydora (one ichnospecies), Talpina (one ichnospecies), and Caulostrepsis (one ichnospecies), as well as the new ichnogenus Uniglobites, indeterminate ichnogenus A, and a problematical boring. Entobia accounts for about 75 percent of the borings, while Uniglobites and Trypanites together account for 15 percent of the borings. Comparison of Uniglobites with modern borings of known affinity suggests that it was produced by adociid and/or clionid sponges while indeterminate ichnogenus A was probably formed by bivalves. The amount of boring, which ranges from 0 to 75 percent, varies from skeleton to skeleton or, in some cases, from branch to branch of the same coral colony. The branching coral Stylophora was particularly susceptible to boring, probably because of its small size and high surface area. The average boring of about 38 percent compares favorably with the amount of boring found in modern corals. Analysis of the borings suggests that sponges were responsible for most of the borings in the corals from the Bluff Formation. Comparison with bioerosion in modern reefs suggests that similar patterns of bioerosion were also occurring in Oligocene–Miocene times.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, K. L., and Risk, M. J. 1985. Substrate destruction and sediment production by the boring sponge Cliona caribbea on Grand Cayman Island. Journal of Sedimentary Petrology, 55:705711.Google Scholar
Ahr, W. M., and Stanton, R. J. 1973. The sedimentologic and paleoecologic significance of Lithotrya, a rock-boring barnacle. Journal of Sedimentary Petrology, 43:2023.Google Scholar
Bak, R. P. M. 1976. The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Netherlands Journal of Sea Research, 10:285337.CrossRefGoogle Scholar
Bergquist, P. R. 1978. Sponges. Hutchinson, London, 268 p.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock as an example, p. 4990. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue, No. 3.Google Scholar
Bromley, R. G. 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontologische Zeitschrift, 46:9398.CrossRefGoogle Scholar
Bromley, R. G. 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:169197.CrossRefGoogle Scholar
Bromley, R. G. and D'Alessandro, A. 1983. Bioerosion on the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora . Rivista Italiana di Paleontologia et Stratigraphie, 89:283309.Google Scholar
Bromley, R. G. and D'Alessandro, A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana di Paleontologia et Stratigraphie, 90:227296.Google Scholar
Buchbinder, B. 1975. Lithogenesis of Miocene reef limestones in Israel with particular reference to the significance of the red algae. Unpubl. , The Hebrew University, Jerusalem.Google Scholar
Buchbinder, B. 1977. Different responses to diagenesis of various coral groups in the Miocene Ziqlag Formation, Israel, Second International Symposium on Corals and Fossil Coral Reefs, Paris. Mémoires du Bureau de Recherches Géologiques et Minieres No. 89, p. 2932.Google Scholar
Cameron, B. 1969. New name for Palaeosabella prisca (McCoy), a Devonian worm-boring, and its preserved probable borer. Journal of Paleontology, 43:189192.Google Scholar
Davies, P. J., and Hopley, D. 1983. Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef. BMR. Journal of Australian Geology and Geophysics, 8:237251.Google Scholar
Davies, P. J., and Hutchings, P. A. 1983. Initial colonization, erosion and accretion on coral substrate: experimental results, Lizard Island, Great Barrier Reef. Coral Reefs, 1:2735.CrossRefGoogle Scholar
de Laubenfels, M. W. 1955. Porifera, p. E21E112. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. E. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology. The Use of Trace Fossils in Sedimentology and Stratigraphy. Society of Economic Paleontologists and Mineralogists Short Course No. 15. Tulsa, Oklahoma, 317 p.CrossRefGoogle Scholar
Emig, C. C. 1979. British and other phoronids. Keys and notes for the identification of species, p. 156. In Kermack, D. M. and Barnes, R. K. S. (eds.), Synopses of the British Fauna, No. 13. Academic Press, London.Google Scholar
Fischer, M. P. 1868. Recherches sur les éponges perforantes fossiles. Nouvelles Archives—Musée National D'Histoire Naturelle (Paris), 4:117173.Google Scholar
Folk, R. L., Roberts, H. H., and Moore, C. H. 1973. Black phytokarst from Hell, Cayman Islands, British West Indies. Geological Society of America Bulletin, 84:23512360.2.0.CO;2>CrossRefGoogle Scholar
Fürsich, F. T. 1979. Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jahrbuch Geologie und Paläontologie Abhandlungen, 158:163.Google Scholar
Fütterer, D. K. 1974. Significance of the sponge Cliona for the origin of fine grained material of carbonate sediments. Journal of Sedimentary Petrology, 44:7984.Google Scholar
Gardiner, J. S. 1902. The action of boring and sand-feeding organisms, p. 333341. In Gardiner, J. S. (ed.), The Fauna and Geography of the Maldive and Laccadive Archipelago. New York.Google Scholar
Goldring, R., and Kazmierczak, J. 1974. Ecological successions in intraformational hardground formation. Palaeontology, 17:949962.Google Scholar
Goreau, T. F., and Hartman, W. D. 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs, p. 2554. In Sognnaes, R. F. (ed.), Mechanisms of Hard Tissue Destruction. American Association for the Advancement of Science, Publication No. 75.Google Scholar
Halley, R. B., Shinn, E. A., Hudson, J. H., and Lidz, B. 1977. Recent and relict topography of Boo Bee Patch Reef, Belize. Proceedings of the Third International Coral Reef Symposium, Miami, p. 2935.Google Scholar
Hamner, W. M., and Jones, M. S. 1976. Distribution, burrowing, and growth rates of the clam Tridacna crocea on interior reef flats: formation and structures resembling micro atolls. Oecologia, 24:207227.CrossRefGoogle ScholarPubMed
Häntzschel, W. 1975. Miscellanea, Supplement 1: Trace Fossils and Problematica, p. 1269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hein, F. J., and Risk, M. J. 1975. Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bulletin of Marine Science, 25:133138.Google Scholar
Henderson, R. A., and McNamara, K. J. 1985. Taphonomy and ichnology of cephalopod shells in a Maastrichtian chalk from Western Australia. Lethaia, 18:305322.CrossRefGoogle Scholar
Highsmith, R. C. 1981a. Coral bioerosion at Enewetak: agents and dynamics. Internationale Revue der Gesamten Hydrobiologie, 66:335375.CrossRefGoogle Scholar
Highsmith, R. C. 1981b. (Notes and comments) Coral bioerosion: damage relative to skeletal density. The American Naturalist, 117:193198.CrossRefGoogle Scholar
Highsmith, R. C., Lueptow, R. L., and Schonberg, S. C. 1983. Growth and bioerosion of three massive corals on the Belize barrier reef. Marine Ecology-Progress Series, 13:261271.CrossRefGoogle Scholar
Hutchings, P. A. 1986. Biological destruction of coral reefs: a review. Coral Reefs, 4:239252.CrossRefGoogle Scholar
Hutchings, P. A. amd Bamber, L. 1985. Variability of bioerosion rates at Lizard Island, Great Barrier Reef: preliminary attempts to explain these rates and their significance. Proceedings of the Fifth International Coral Reef Congress, Tahiti, 2:333338.Google Scholar
James, N. P. 1970. Role of boring organisms in the coral reefs of Bermuda Platform. Bermuda Biological Station Special Publication, No. 6, p. 1928.Google Scholar
James, N. P., Kobluk, D. R., and Pemberton, S. G. 1977. The oldest macro-borers: Lower Cambrian of Labrador. Science, 197:980983.CrossRefGoogle Scholar
Jones, B., and Pemberton, S. G. 1988. Lithophaga borings and their influence on the diagenesis of corals in the Pleistocene Ironshore Formation of Grand Cayman Island, British West Indies. Palaios, 3:119.CrossRefGoogle Scholar
Jones, B., Lockhart, E. B., and Squair, C. 1984. Phreatic and vadose cements in the Tertiary Bluff Formation of Grand Cayman Island, British West Indies. Canadian Petroleum Geology Bulletin, 32:382397.Google Scholar
Kauffman, E. G., and Sohl, N. F. 1974. Structure and evolution of Antillean Cretaceous rudist frameworks. Verhandlungen der Naturforschenden Gesellschaft in Basel, 84:399467.Google Scholar
Kelly, S. R. A., and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Kleemann, K. H. 1982. Ätzmuscheln im ghetto? (A ghetto for etching bivalves). Beiträge zur Paläontologie von Österreich, No. 9, p. 211231.Google Scholar
Kobluk, D. R. 1981a. Lower Cambrian cavity-dwelling endolithic (boring) sponges. Canadian Journal of Earth Science, 18:972980.CrossRefGoogle Scholar
Kobluk, D. R. 1981b. Middle Ordovician (Chazy Group) cavity-dwelling boring sponges. Canadian Journal of Earth Science, 18:11011108.CrossRefGoogle Scholar
MacGeachy, J. K. 1975. Boring by macro-organisms in the coral Montastrea annularis on Barbados reefs. Unpubl. , McGill University, Montreal, 83 p.Google Scholar
MacGeachy, J. K. 1977. Factors controlling sponge boring in Barbados reef corals. Proceedings of the Third International Coral Reef Symposium, Miami, 2:477483.Google Scholar
MacGeachy, J. K., and Stearn, C. W. 1976. Boring by macroorganisms in the coral Montastrea annularis on Barbados reefs. Internationale Revue der Gesamten Hydrobiologie, 61:715745.CrossRefGoogle Scholar
Marcus, E. du B. R. 1949. Phoronis ovalis from Brazil. Zoologia, 14:157171.Google Scholar
Moore, C. H., and Shedd, W. W. 1977. Effective rates of sponge bioerosion as a function of carbonate production. Proceedings of the Third International Coral Reef Symposium, Miami, p. 499505.Google Scholar
Morris, J. 1851. Palaeontological notes. Annals and Magazine of Natural History, Series 2, 8:8590.CrossRefGoogle Scholar
Neumann, A. C. 1966. Observations on coastal erosion in Bermuda and the measurements of the boring rates of the sponge Cliona lampa . Limnology and Oceanography, 11:92108.CrossRefGoogle Scholar
Otter, G. W. 1937. Rock-destroying organisms in relation to coral reefs. British Museum of Natural History, Scientific Reports of Great Barrier Reef Expedition 1928–1929, 1:323352.Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.CrossRefGoogle Scholar
Pang, R. K. 1973. The systematics of some Jamaican excavating sponges (Porifera). Postilla, 161:175.CrossRefGoogle Scholar
Pemberton, S. G., Jones, B., and Edgecombe, G. 1988. Trypanites-controlled diagenetic fabrics in Devonian stromatoporoids. Journal of Paleontology, 62:2231.CrossRefGoogle Scholar
Pleydell, S. M. 1987. Aspects of diagenesis and ichnology in the Oligocene-Miocene Bluff Formation, Grand Cayman Island, British West Indies. Unpubl. , University of Alberta, Edmonton, 209 p.Google Scholar
Risk, M. J., and MacGeachy, J. K. 1978. Aspects of bioerosion of modern Caribbean reefs. Re vista de Biologia Tropical, 26:85105.Google Scholar
Rützler, K. 1971. Bredin-Archbold-Smithsonian biological survey of Dominica: burrowing sponges, genus Siphonodictyon Bergquist, from the Caribbean. Smithsonian Contributions to Zoology, 77, 37 p.Google Scholar
Rützler, K. 1974. The burrowing sponges of Bermuda. Smithsonian Contributions to Zoology, 165, 32 p.Google Scholar
Rützler, K. 1975. The role of burrowing sponges in bioerosion. Oecologia, 19:203216.CrossRefGoogle ScholarPubMed
Simpson, T. L. 1984. The Cell Biology of Sponges. Springer-Verlag, New York, 662 p.CrossRefGoogle Scholar
Smith, S. V. 1983. Coral reef calcification, p. 240247. In Barnes, D. J. (ed.), Perspectives on Coral Reefs. Australian Institute of Marine Science, Contribution No. 200.Google Scholar
Stearn, C. W., and Scoffin, T. P. 1977. Carbonate budget of a fringing reef, Barbados. Proceedings of the Third International Coral Reef Symposium, Miami, p. 471476.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geological Survey Professional Paper 242, 226 p.Google Scholar
Supko, P. R. 1977. Subsurface dolomites, San Salvador, Bahamas. Journal of Sedimentary Petrology, 47:10631077.Google Scholar
Teichert, C. 1945. Parasitic worms in Permian brachiopod and pelecypod shells in western Australia. American Journal of Science, 243:197206.CrossRefGoogle Scholar
Tudhope, A. W., and Risk, M. J. 1985. Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. Journal of Sedimentary Petrology, 55:440447.Google Scholar
Voigt, E. 1975. Tunnelbaue rezenter und fossiler Phoronidea. Palaontologische Zeitschrift, 49:135167.CrossRefGoogle Scholar
Ward, P., and Risk, M. J. 1977. Boring patterns of the sponge Cliona vermifera in the coral Montastrea annularis . Journal of Paleontology, 51:520526.Google Scholar
Warme, J. E. 1977. Carbonate borers—their role in reef ecology and preservation, p. 261279. In Frost, S. H., Weiss, M. P., and Saunders, J. B. (eds), Reefs and Related Carbonates—Ecology and Sedimentology. American Association of Petroleum Geologists, Studies in Geology, No. 4.Google Scholar