Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.575 Render date: 2022-10-04T14:49:01.795Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Scratch Traces of Large Ediacara Bilaterian Animals

Published online by Cambridge University Press:  15 October 2015

James G. Gehling
Affiliation:
South Australian Museum, Division of Natural Science, North Terrace, Adelaide, South Australia 5000 University of Adelaide, North Terrace, South Australia 5000, Australia,
Bruce N. Runnegar
Affiliation:
Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095-1567, USA,
Mary L. Droser
Affiliation:
Department of Earth Sciences, University of California, Riverside, CA 92521, USA,

Abstract

Ediacara fan-shaped sets of paired scratches Kimberichnus teruzzii from the Ediacara Member of the Rawnsley Quartzite, South Australia, and the White Sea region of Russia, represent the earliest known evidence in the fossil record of feeding traces associated with the responsible bilaterian organism. These feeding patterns exclude arthropod makers and point to the systematic feeding excavation of seafloor microbial mats by large bilaterians of molluscan grade. Since the scratch traces were made into microbial mats, animals could crawl over previous traces without disturbing them. The trace maker is identified as Kimberella quadrata, whose death masks co-occur with the mat excavation traces in both Russia and South Australia. The co-occurrence of animals and their systematic feeding traces in the record of the Ediacara biota supports previous trace fossil evidence that bilaterians existed globally before the Cambrian explosion of life in the ocean.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C. 1983. The effects of macrobenthos on chemical properties of marine sediment and overlying water, p. 53102. In McCall, P. L. and Tevesz, M. J. S. (eds.), Animal-Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, New York.Google Scholar
Alpert, S. P. 1975. Planolites and Skolithos from the upper Precambrian–lower Cambrian, White Inyo Mountains, California. Journal of Paleontology, 49:508521.Google Scholar
Antcliffe, J. B., Gooday, A. J., and Brasier, M. D. 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology, 54:1,1571,175.CrossRefGoogle Scholar
Banks, N. L. 1970. Trace fossils from the late Precambrian and lower Cambrian of Finnmark, Norway. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, Special Issue 3:1934.Google Scholar
Bergström, J. 1990. Precambrian trace fossils and the rise of bilaterian animals. Ichnos, 1:313.CrossRefGoogle Scholar
Bottjer, D. J. and Droser, M. L. 1994. The history of Phanerozoic bioturbation, p. 155176. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, Chichester.Google Scholar
Bottjer, D.J., Hagadorn, W. J., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.Google Scholar
Brasier, M. D., McIlroy, D., Liu, A. G., Antcliffe, J. B., and Menon, L. R. 2013. The oldest evidence of bioturbation on Earth: Comment. Geology, e289, doi:10.1130 /G33606Y.1.Google Scholar
Buatois, L. and Mangáno, M. G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, 358 p.Google Scholar
Brusca, R. C. and Brusca, G. J. 2003. Invertebrates, 2nd edition. Sinauer Associates, Inc. Sunderland, Massachusetts, 936 p.Google Scholar
Bulcao, C. and Hodgson, A. N. 2012. Activity and feeding of Dotilla fenestrata (Brachyura: Ocypodidae) in a warm, temperate South African estuary. African Journal of Aquatic Science, 37:333338.CrossRefGoogle Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S., 2013 Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.CrossRefGoogle Scholar
Clites, E. C., Droser, M. L., and Gehling, J. G. 2012. The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology, 40:307310.CrossRefGoogle Scholar
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace fossils. Paleobiology, 26:4755.2.0.CO;2>CrossRefGoogle Scholar
Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T. 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176:110.CrossRefGoogle Scholar
Crimes, T. P. 1970. Trilobite and other trace fossils from the upper Cambrian of North Wales. Geological Journal, 7:4768.CrossRefGoogle Scholar
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.CrossRefGoogle Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic–Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.CrossRefGoogle Scholar
Crimes, T. P. 1994. The period of early evolution failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian–Cambrian boundary, p. 105133. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, New York.Google Scholar
Crimes, T. P. and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of southwest Africa (Namibia). Journal of Paleontology, 56:890907.Google Scholar
Daily, B. 1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt. Scott Range, Flinders Ranges, South Australia. Search, 4:202205.Google Scholar
Dornbos, S. Q., Bottjer, D. J., and Chen, J.-Y. 2004. Precambrian animal life: evidence for seafloor microbial mats and associated metazoan lifestyles in lower Cambrian phosphorites of Southwest China. Lethaia, 37:127137.CrossRefGoogle Scholar
Droser, M. L, Gehling, J. G., and Jensen, S. 1999. When the worm turned: concordance of early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology, 27:625628.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2005. Ediacaran trace fossils: true and false, p. 127140. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development; a symposium honoring the scientific contributions of Adolf Seilacher in celebrating his 80th birthday; 2005 Apr 1–2, New Haven. New Haven Peabody Museum of Natural History, Tale University.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147.CrossRefGoogle Scholar
Droser, M. L, Jensen, S., and Gehling, J. G. 2002 a. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, 99:12,57212,576.CrossRefGoogle ScholarPubMed
Droser, M. L, Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002 b. Lowermost Cambrian Ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian Substrates. Palaios, 17:315.2.0.CO;2>CrossRefGoogle Scholar
Dzik, J. 2007. The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian-Cambrian transition, p. 405414. In Vickers-Rich, P. and Kommaroer, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:1,0911,097.CrossRefGoogle ScholarPubMed
Farmer, J., Vidal, G., Moczydlowska, M., Strauss, H., Ahlberg, P., and Siedlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine, 129:181195.CrossRefGoogle Scholar
Fedonkin, M. A. 1977. Precambrian–Cambrian ichnocoenoses of the East-European platform, p. 183194. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, Special Issue 9.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.CrossRefGoogle Scholar
Fedonkin, M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.CrossRefGoogle Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications, p. 157179. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.Google Scholar
Fedonkin, M. A. and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Garcia-Bellido, D. C., Paterson, J. R., and Edgecombe, G. D. 2013. Cambrian palaeoscolecids (Cycloneuralia) from Gondwana and re-appraisal of species assigned to Palaeoscolex . Gondwana Research, 24:780795.CrossRefGoogle Scholar
Gaucher, C., Poiré, D. G., Bossi, J, Bettucci, L. S., and Beri, Á., 2013. Comment on “Bilaterian burrows and grazing behavior at >585 million years ago”. Science, 339:906.CrossRefGoogle Scholar
Gehling, J. G. 1986. Algal binding of siliciclastic sediments: a mechanism in the preservation of Ediacaran fossils. Twelfth International Sedimentological Congress, Canberra Abstracts, 117.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Journal of Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G. 1996. Taphonomy of the Terminal Proterozoic Ediacara Biota, South Australia. Unpublished Ph.D. Thesis, University of California, Los Angeles, 222 p.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research, 100:6595.CrossRefGoogle Scholar
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth Science Reviews, 96:196206.CrossRefGoogle Scholar
Gehling, J. G. and Droser, M. L. 2012. Ediacaran stratigraphy and the biota of the Adelaide Geosyncline, South Australia. Episodes, 35:236246.Google Scholar
Gehling, J. G. and Droser, M. L. 2013. How well do assemblages of the Ediacara Biota tell time? Geology, 41:447450.CrossRefGoogle Scholar
Gehling, J. G., Droser, M. L., Jensen, S., and Runnegar, B. N. 2005. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Proceedings of a Symposium Honoring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th Birthday. Peabody Museum of Natural History, Yale University, New Haven, Connecticut, U.S.A. Google Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacara Fauna, Pound Subgroup, South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Germs, G. J. B. 1972. Trace fossils from the Nama Group, South-West Africa. Journal of Paleontology, 46:864870.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.CrossRefGoogle Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. A Biohistorical Study. Cambridge University Press, Cambridge, 244 p.Google Scholar
Glaessner, M. F. and Daily, B., 1959. The geology and late Precambrian fauna of the Ediacaran fossil reserve. Records of the South Australian Museum, 13:369401.Google Scholar
Glaessner, M. F. and WADE, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Goldring, R. 1985. The formation of the trace fossil Cruziana . Geological Magazine, 122:6572.CrossRefGoogle Scholar
Goldring, R. and Seilacher, A. 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 137:422442.Google Scholar
Grazhdankin, D. V. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203221.2.0.CO;2>CrossRefGoogle Scholar
Grazhdankin, D. V. and Bronnikov, A. A. 1997. A new locality of the remains of the late Vendian soft-bodied organisms on the Onega Peninsula. Transactions (Doklady) of the Russian Academy of Sciences/Earth Science Sections, 357A:1,3111,315.Google Scholar
Grazhdankin, D. and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210.CrossRefGoogle Scholar
Grazhdankin, D., Maslov, A. V., Mustill, T. M. R., and Krupenin, M. T. 2005. The Ediacaran White Sea biota in the central Urals. Doklady Earth Science, 401A:382385.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.CrossRefGoogle Scholar
Haines, P.W. 2000. Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research, 100:97108.CrossRefGoogle Scholar
Hagadorn, J. W. and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian–Cambrian transition. Palaios, 14:7385.CrossRefGoogle Scholar
Hickman, C. S. 1983. Radular patterns, systematics, diversity and ecology of deep-sea limpets. Veliger, 26:792.Google Scholar
Hickman, C. S. and Morris, T. E. 1985. Gastropod feeding tracks as a source of data in analysis of the functional morphology of radulae. Veliger, 27:357365.Google Scholar
Horodyski, R. J. 1993. Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western U.S.A. Precambrian Research, 61:241278.CrossRefGoogle Scholar
Howe, M. P. A., Evans, M., Carney, J. N., and Wilby, P. R. 2012. New perspectives on the globally important Ediacaran fossil discoveries in Charnwood Forest, UK: Harley's 1848 prequel to Ford (1958). Proceedings of the Yorkshire Geological Society, 59:137144.CrossRefGoogle Scholar
Ivantsov, A. Yu. 2009. New reconstruction of Kimberella. Problematic Vendian metazoan. Paleontological Journal, 43:601611.CrossRefGoogle Scholar
Ivantsov, A. Yu. 2010. Paleontological evidence for the supposed Precambrian occurrence of mollusks. Paleontological Journal, 44:1,5521,559.CrossRefGoogle Scholar
Ivantsov, A. Yu. 2013. Trace fossils of Precambrian metazoans “Vendobionta” and Mollusks”. Stratigraphy and Geological Correlation, 21:252264.CrossRefGoogle Scholar
Ivantsov, A. Yu. and Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Science [English Trans.], 385A:618622.Google Scholar
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Palaeontographica Americana, 54:95104.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.CrossRefGoogle Scholar
Jenkins, R. J. F. 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research, 73:5169.CrossRefGoogle Scholar
Jenkins, R. J. F., Ford, C. H., and Gehling, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia, 30:101119.CrossRefGoogle Scholar
Jensen, S. 2003.The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.CrossRefGoogle Scholar
Jensen, S., Gehling, J. G., and Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature, 393:567569.CrossRefGoogle Scholar
Jensen, S., Droser, M. L., and Gehling, J. G., 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:1929.CrossRefGoogle Scholar
Jensen, S., Droser, M. L., and Gehling, J. G., 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Palaeontology. Springer, Netherlands.CrossRefGoogle Scholar
Lai, J. H., del Alamo, J. C., Rodrîguez-Rodrîguez, J., and Lasheras, J. C. 2010. The mechanics of adhesion locomotion of terrestrial gastropods. The Journal of Experimental Biology, 213:3,9203,933.CrossRefGoogle Scholar
Landing, E. 1994. Precambrian–Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22:179182.2.3.CO;2>CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.CrossRefGoogle Scholar
Martin, M. W., Grazhdankin, D. M., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288:841845.CrossRefGoogle ScholarPubMed
Martinsson, A. 1965. Aspects of a middle Cambrian thanatotope on Öland. Geologiska Föreningens i Stockholm, Förhandlingar, 87:181230.CrossRefGoogle Scholar
McIlroy, D. and Logan, G. A., A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14:5872.CrossRefGoogle Scholar
Menon, L. R., McIlroy, D., and Brasier, M. D. 2013. Evidence for Cnidaria-like behavior in ca. 560 Ma. Ediacaran Aspidella . Geology, 41:289292.CrossRefGoogle Scholar
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the upper Ediacaran enigmatic ribbon-like fossil Shaanxilithes . Palaios, 27:354372.CrossRefGoogle Scholar
Mount, J. F. and McDonald, C. 1992. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic–early Cambrian metazoan radiation, Australia. Geology, 20:1,0311,034.2.3.CO;2>CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Reviews Earth Planetary Science, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Nedin, C. and Jenkins, R. J. F. 1991. Re-evaluation of unconformities separating the “Ediacaran” and Cambrian Systems, South Australia. Comment. Palaios, 6:102105.CrossRefGoogle Scholar
Noffke, N. 2009. The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews, 96:173180.CrossRefGoogle Scholar
Pecoits, E., Konhauser, K. O., Aubet, N. R., Heaman, L. M., Veroslavsky, G., Stern, R., and Gingras, M. K. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science, 336:1,6931,696.CrossRefGoogle ScholarPubMed
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions, Royal Society B, 363:1,4351,443.CrossRefGoogle ScholarPubMed
Pflüger, F. P. 1999. Matground structures and redox facies. Palaios, 14:2539.CrossRefGoogle Scholar
Pflüger, F. P. and Gresse, P. 1996. Microbial sand chips—a non-actualistic sedimentary structure. Sedimentary Geology, 102:263274.CrossRefGoogle Scholar
Retallack, G. J. 2013. Ediacaran life on land. Nature, 493:8992.CrossRefGoogle ScholarPubMed
Rogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K., Kochnev, B., Karlova, G., and Grazhdankin, D. 2012. The oldest evidence of bioturbation on Earth. Geology, 40:395398.CrossRefGoogle Scholar
Saylor, B. Z., Grotzinger, J. P., and Germs, J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research, 73:153171.CrossRefGoogle Scholar
Schieber, J. 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 14:312.CrossRefGoogle Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones, p. 447476. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Seel House Press, Liverpool, 547 p.Google Scholar
Seilacher, A. 1984. Late Precambrian and early Cambrian Metazoa: preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth History. Dahlem Konferenzen. Springer-Verlag, Berlin, 450 p.Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia, 22:229239.CrossRefGoogle Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer Verlag, Heidelberg, 226 p.Google Scholar
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.CrossRefGoogle Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: the dawn of animal life in the shadows of giant protests. Paleontological Research, 7:4354.CrossRefGoogle Scholar
Seilacher, A. and Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution, p. 97105. In Krumbein, W. E., Paterson, D. M., and Stal, L. J. (eds.), Biostabilization of Sediments. Bibliotheks und Informationssystem, Universität Oldenburg, 526 p.Google Scholar
Sperling, E. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development, 12:201209.CrossRefGoogle ScholarPubMed
Sprigg, R. C. 1947. Early Cambrian (?) jellyfish from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 71:212223.Google Scholar
Sprigg, R. C. 1949. Early Cambrian “jellyfishes” at Ediacara, South Australia and Mount, John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 73:7299.Google Scholar
Tarhan, L. G., Hughes, N. C., Myrow, P. M., Bhargava, O. N., Ahluwalia, A. D., and Kudryavtsev, A. B. 2013. Precambrian–Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningqiangensis from the Lesser Himalaya of India. Palaeontology, in press. DOI: 10.1111/pala.12066.Google Scholar
Trusler, P., Stilwell, J., and Vickers-Rich, P. 2007. Comment: future research directions for further analysis of Kimberella , p. 181185. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126:851859.Google ScholarPubMed
Vannier, J., Calandra, I., Gaillard, C., and Zylinska, A. 2010. Priapulid worms: pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology, 38:711714.CrossRefGoogle Scholar
Vidal, G., Jensen, S., and Palacios, T. 1994. Neoproterozoic (Vendian) ichnofossils from lower Alcudian strata in central Spain. Geological Magazine, 131:169179.CrossRefGoogle Scholar
Voigt, E. 1977. On grazing traces produced by the radula of fossils and recent gastropods and chitons, p. 335346. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils, 2nd edition. Seel House Press, 547 p.Google Scholar
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197225.Google Scholar
Walcott, C. D. 1920. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67:261364.Google Scholar
Walter, M. R., Elphinstone, R., and Heys, G. R. 1989. Proterozoic and early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa, 13:209256.CrossRefGoogle Scholar
Weber, B. M., Steiner, M., and Zhu, M.-Y. 2007. Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:328349.CrossRefGoogle Scholar
71
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scratch Traces of Large Ediacara Bilaterian Animals
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Scratch Traces of Large Ediacara Bilaterian Animals
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Scratch Traces of Large Ediacara Bilaterian Animals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *