Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T01:50:13.066Z Has data issue: false hasContentIssue false

Late Cretaceous octobrachiate coleoid lower jaws from the north Pacific regions

Published online by Cambridge University Press:  20 May 2016

Kazushige Tanabe
Affiliation:
1Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan,
Pat Trask
Affiliation:
2Courtenay and District Museum and Paleontology Center, Courtenay, British Columbia V9N 1G7, Canada,
Rick Ross
Affiliation:
2Courtenay and District Museum and Paleontology Center, Courtenay, British Columbia V9N 1G7, Canada,
Yoshinori Hikida
Affiliation:
3Nakagawa Museum of Natural History, Nakagawa Town, Hokkaido 098-2626, Japan,

Abstract

Eight well-preserved cephalopod jaw fossils were discovered from the Upper Cretaceous (Santonian and Campanian) deposits of Vancouver Island, Canada, and Hokkaido, Japan. They occur individually in calcareous concretions and retain their three-dimensional architecture. Seven of them consist of a widely open outer lamella and a posteriorly projected inner lamella with a pointed rostrum. Both lamellae are made of fluorapatite, which may represent diagenetically altered chitin, and lack a calcareous element. Based on these diagnostic features, the seven jaw fossils are identified as lower jaws of the Coleoidea. Comparison with the lower jaws of modern coleoids allows us to distinguish the following new genera and species among them; Nanaimoteuthis jeletzkyi of the Order Vampyromorphida, and Paleocirroteuthis haggarti and P. pacifica of the Order Cirroctopodida. The lower jaws of these new taxa are clearly distinguished by having a much less projected inner lamella from those of modern and extinct species of the Superorder Decabrachia and the Order Octopodida. The maximum lengths of their outer lamellae (35.0-67.1 mm) are much larger than those of most modern vampyromorph and cirroctopodid species, indicating the large body size and weight of their owners. One of the other three lower jaws examined, characterized by a posteriorly extended outer lamella, may be assigned to the Octopodida. This study clearly demonstrates that large octobrachiate coleoids existed in the Late Cretaceous North Pacific.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandel, K. and Leich, H. 1986. Jurassic Vampyromorpha (dibranchiate cephalopods). Neues Jahrbuch für Geologie und Paläontologie, Montshafte, Jahrgang 1986(3): 129148.Google Scholar
Bather, F. A. 1888. Shell-growth in Cephalopoda (Siphonopoda). Annals and Magazine of Natural History, (6)1:298310.Google Scholar
Bizikov, V. A. 2004. The shell in Vampyropoda (Cephalopoda): Morphology, functional role and evolution. Ruthenica supplement, 3:188.Google Scholar
Chun, C. 1903. Aus den Tiefen des Weltmeeres. Second edition. Jena, Gustav Fischer, 592 p.Google Scholar
Chun, C. 1911. Cirrothauma, ein Blinder Cephalopod. Doctoral dissertation. Leipzig, 21 p.Google Scholar
Clarke, M. R. 1962. The identification of cephalopod “beaks” and the relationship between beak size and total body weight. Bulletin of the British Museum (Natural History), Zoology, 8:419480.Google Scholar
Clarke, M. R. 1980. Cephalopoda in the diet of sperm whales of the southern Hemisphere and their bearing on sperm whale biology. Discovery Reports, 37:1324.Google Scholar
Clarke, M. R. (ed.). 1986. A Handbook for the Identification of Cephalopod Beaks. Clarendon Press, Oxford, 273 p.Google Scholar
Clarke, M. R. and Maddock, L. 1988. Beaks of living coleoid Cephalopoda, p. 121131. In Clarke, M. R. and Trueman, E. R. (eds.), The Mollusca. Volume 12. Paleontology and Neontology of Cephalopods. Academic Press, San Diego.Google Scholar
Donovan, D. T. 1977. Evolution of the Dibranchiate Cephalopoda, p. 1548. In Nixon, M. and Messenger, J. B. (eds.), The Biology of Cephalopods. Symposia of the Zoological Society of London, No. 38. Academic Press, London.Google Scholar
Donovan, D. T. 1983. Mastigophora Owen: A little known genus of Jurassic coleoid. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 165:484495.Google Scholar
Donovan, D. T. and Toll, R. B. 1988. The gladius in coleoid (Cephalopoda) evolution, p. 89101. In Clarke, M. R. and Trueman, E. R. (eds.), The Mollusca. Volume 12. Paleontology and Neontology of Cephalopods. Academic Press, San Diego.Google Scholar
Doyle, P., Donovan, D. T., and Nixon, M. 1994. Phylogeny and systematics of the Coleoidea. University of Kansas, Paleontological Contributions, New Series, 5:115.Google Scholar
Engeser, T. 1988. Fossilium Catalogus 1. Animalia Pars 130. Vampyromorpha (“Fosslie Teuthiden”). Kugler, Amsterdam, 167 p.Google Scholar
Engeser, T. 1990. Phylogeny of the fossil coleoid Cephalopoda (Mollusca). Berliner Geowissenschaftliche Abhandlungen, 124:123191.Google Scholar
Engeser, T. and Bandel, K. 1988. Phylogenetic classification of coleoid cephalopods. p. 105116. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods—Present and Past. E. Schweizerbart'sche Velag., Stuttgart.Google Scholar
Eschricht, D. F. 1836. Cirroteuthis muelleri, eine neue Gattung der Cephalopoden Bildend. Nova Acta Physico-Medica Academiae Casearea Leopoldino-Carolinae Naturae Curiosorum, 18:27634.Google Scholar
Fischer, J.-C. and Riou, B. 1982a. Les teuthïdes (Cephalopoda, Dibranchiata) du Callovien inférieur de la Voulte-sur-Rhône (Ardèche, France). Annales de Paléontologie, Paris, 68:295325.Google Scholar
Fischer, J.-C. and Riou, B. 1982b. Le plus ancient poulpe connu (Cephalopoda, Dibranchiata), Proteroctopus ribeti nov. gen., nov. sp., du Callovien de l'Ardèche (France). Comptes rendus de l'Académie des Sciences, Paris, 295:277280.Google Scholar
Fischer, J.-C. and Riou, B. 2002. Vampyronassa rhodanica nov. gen. nov sp., vampyromorphe (Cephalopoda, Coleoidea) du Callovien inférieur de La Voulte-sur-Rhône (Ardèche, France). Annales de Paléontologie 88:117.Google Scholar
Fuchs, D. 2006a. Morphology, taxonomy and diversity of vampyropod coleoids (Cephalopoda) from the Upper Cretaceous of Lebanon. Memorie della Societã Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 34(11): 128.Google Scholar
Fuchs, D. 2006b. Fossil Erhaltungsfähige Merkmalskomplexe der Coleoidea (Cephalopoda) und ihre phylogenetische Bedeutung. Berliner paläobiologische Abhandlungen 8:1115.Google Scholar
Haas, W. 2002. The evolutionary history of the eight-armed Coleoidea. Abhandlungen der geologischen Bundesanstalt Wien, 57:341351.Google Scholar
Haeckel, E. H. P. A. 1866. Systemischer Phylogenie. Entwurf eines Naturlichen Systems der Organismen auf Grund ihrer Stammesgeschite. Zwiter Theil; Systemische Phylogenie der Wirbellosen Thiere (Invertebrata). Georg Reimer, Berlin.Google Scholar
Haggart, J. W. 1994. Turonian (Upper Cretaceous) strata and biochronology of southern Gulf Islands, British Columbia; in Current Research 1994-A. Geological Survey of Canada: 159164.Google Scholar
Haggart, J. W. and Ward, P. D. 1989. New Nanaimo Group ammonites (Cretaceous, Santonian-Campanian) from British Columbia and Washington State. Journal of Paleontology, 63:218227.Google Scholar
Harzhauser, M. 1999. Filling a gap—beaks and hooks of Cenozoic coleoids (Cephalopoda). Annalen des Naturhistorischen Museum in Wien, 101A: 123135.Google Scholar
Hewitt, R. A., Yoshiike, T., and Westermann, G. E. G. 1991. Shell microstructure and ecology of the Cretaceous coleoid cephalopod Naefia from the Santonian of Japan. Cretaceous Research, 12:4754.Google Scholar
Hirano, H., Obata, I., and Ukishima, M. 1990. Naefia matsumotoi, a unique coleoid (Cephalopoda) from the Upper Cretaceous of Japan. Saito Ho-on Kai Special Publications, 3:201221.Google Scholar
House, M. R. 1988. Major features of cephalopod evolution, p. 116. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods—Present and Past. E. Schweizerbart'sche Velag., Stuttgart.Google Scholar
Hunt, S. and Nixon, M. 1981. A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods. Comparative Biochemistry and Physiology, 68B:535546.Google Scholar
Iverson, I. L K. and Pinkas, L. 1971. A pictorial guide to beaks of certain Eastern Pacific cephalopods. Fish Bulletin 152:8384.Google Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny, and classification of fossil Coleoidea. The University of Kansas Paleontological Contributions, Mollusca, Article 7:1162.Google Scholar
Kanie, Y. 1998. New vampyromorph (Coleoidea: Cephalopoda) jaw apparatuses from the Late Cretaceous of Japan. Bulletin of Gumma Museum of Natural History 2:2334.Google Scholar
Kluessendorf, J. and Doyle, P. 2000. Pohlsepia mazonensis, an early ‘Octopus’ from the Carboniferous of Illinois, USA. Palaeontology, 43:919926.Google Scholar
Klug, C. 2001. Functional morphology and taphonomy of nautiloid beaks from the Middle Triassic of southern Germany. Acta Palaeontologica Polonica, 46:4368.Google Scholar
Klug, C., Schweigert, G., Dietl, G., and Fuchs, D. 2005. Coleoid beaks from the Nusplingen Lithographic Limestone (Upper Kimmeridgian, SW Germany). Lethaia 38:173192.CrossRefGoogle Scholar
Kubodera, T. 2000. Identification of jaws in modern coleoid cephalopods. http://research.kahaku.go.jp/zoology/Beak/Google Scholar
Landman, N. H., Tsujita, C. J., Cobban, W. J., Larson, N. L., and Tanabe, K. 2006. Jaws of Late Cretaceous placenticeratid ammonites: How preservation affects the interpretation of morphology. American Museum, Novitates, 3500:148.Google Scholar
Lehmann, U. 1976. Ammoniten. Ihr Leben und ihre Umwelt. Ferdinand Enke, Stuttgart, 171 p.Google Scholar
Linnaeus, C. 1758. Systema Naturae. Edition 10, Vol. 1, Holminae (=Stockholm), 824 p.Google Scholar
Lowenstam, H. A., Tarub, W., and Weiner, S. 1984. Nautilus hard parts: a study of the mineral and organic compositions. Paleobiology, 10:269279.Google Scholar
Ludvigsen, R. and Beard, G. 2001. West Coast Fossils. A Guide to the Ancient Life of Vancouver Island. Second Edition. Harbour Publishing, Madeira Park, 216 p.Google Scholar
McGugan, A. 1979. Biostratigraphy and paleoecology of Upper Cretaceous (Campanian and Maastrichtian) foraminifera from the upper Lambert, Northumberland, and Spray formations. Canadian Journal of Earth Sciences, 16:22632274.Google Scholar
Meyer, H. von. 1834. Leptoteuthis gigas. Museum Senckenbergianum, Abhandlungen, 1:286287.Google Scholar
Muller, J. E. and Jeletzky, J. A. 1970. Geology of the Upper Cretaceous Nanaimo Group, Vancouver Island and Gulf Islands, British Columbia. Geological Survey of Canada Paper 69-25:177.Google Scholar
Mustard, P. S. 1994. The Upper Cretaceous Nanaimo Group, Georgia Basin, p. 2795. In Monger, J. W. H., (ed.) Geology and Geological Hazards of the Vancouver Region, Southwestern British Columbia. Geological Survey of Canada, Bulletin, 481.Google Scholar
Naef, A. 1922. Die Fossilen Tintenfische. Jena, Gustav Fischer, 322 p.Google Scholar
Naef, A. 1923. Die Cephalopoden.-Fauna und Flora des Golfes von Neapel, 35 Monographie (Teil I, Band 1), Systematik. Berlin, 863 p.Google Scholar
Neige, P. and Dommergues, J.-L. 2002. Disparity of beaks and statoliths of some coleoids: A morphometric approach to depict shape differentiation. Abhandlungen der Geologischen Bundesanstalt, 57:393399.Google Scholar
Nixon, M. and Young, J. Z. 2003. The Brains and Lives of Cephalopods. Oxford University Press, Oxford, 392 p.Google Scholar
Okutani, T. and Mikami, S. 1977. Description on beaks of Nautlus macromphalus Sowerby. Venus (Japanese Journal of Malacology), 36:115121.Google Scholar
Pickford, G. E. 1949. Vampyroteuthis infernails Chun. An archaic dibranchiate cephalopod. II. External anatomy. Dana Reports, Carlsberg Foundation, 32:1132.Google Scholar
Robson, G. C. 1929. A Monograph of the Recent Cephalopoda, I: The Octopodinae. British Museum (Natural History), London, 236 p.Google Scholar
Robson, G. C. 1932. A Monograph of the Recent Cephalopoda, II: The Octopoda. British Museum (Natural History), London, 359 p.Google Scholar
Roman, F. 1928. Plesioteuthis gevreyi Roman, p. 112. In Sayn, G. and Roman, F.1928. Etudes sur le Callovian de la Vallée du Rhône. II, Monographie du Jurassique moyen de La Voulte-sur-Rhône. Travux du Laboratoire de Géologie de Lyon, 13 (mém. n° 11, fasc. 1): 1-165.Google Scholar
Rüppell, E. 1829. Abbildungen und Beschreiburg einiger neuen und weniger gekannten Versteinerungen von Solnhofen. Frankfurt/M., Brönner Verlag. 12 p.Google Scholar
Saunders, W. B., Spinosa, C., Teichert, C., and Banks, R. C. 1978. The jaw apparatus of Recent Nautilus and its palaeontological implications. Palaeontology 21:129141.Google Scholar
Sliter, W. V. 1973. Upper Cretaceous foraminifera from the Vancouver Island area, British Columbia, Canada. Journal of Foraminiferal Research, 3: 167186.Google Scholar
Strugnell, J., Jackson, J., Drummond, A. J., and Cooper, A. 2006. Divergence time estimates for major cephalopod groups: Evidence from multiple genes. Cladistics 22:8996.Google Scholar
Takahashi, A., Hirano, H., and Sato, T. 2003. Stratigraphy and fossil assemblage of the Upper Cretaceous in the Teshionakagawa area, Hokkaido, northern Japan. Journal of the Geological Society of Japan, 109:7795. (In Japanese with English abstract).Google Scholar
Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research, 25:365390.Google Scholar
Tanabe, K. and Fukuda, Y. 1983. Buccal mass structure of the Cretaceous ammonite Gaudryceras. Lethaia, 16:249256.Google Scholar
Tanabe, K. and Fukuda, Y. 1999. Morphology and function of cephalopod buccal mass, p. 245262. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, London.Google Scholar
Tanabe, K., Fukuda, Y., Kanie, K., and Lehmann, U. 1980. Rhyncholites and conchorhynchs as calcified jaw elements in some late Cretaceous ammonites. Lethaia, 13:157168.Google Scholar
Tanabe, K., Hikida, Y., and Iba, Y. 2006. Two coleoid jaws from the Upper Cretaceous of Hokkaido, Japan. Journal of Paleontology, 80:138145.Google Scholar
Tanabe, K. and Landman, N. H. 2002. Morphological diversity of the jaws of Cretaceous Ammonoidea. Abhandlungen der Geologischen Bundesanstalt, Wien, 57:157165.Google Scholar
Vecchione, M., Young, R. E., Donovan, D. T., and Rodhouse, P. G. 1999. Reevaluation of coleoid cephalopod relationships based on modified arms in the Jurassic coleoid Mastigophora. Lethaia, 32:113118.Google Scholar
Verrill, A. E. 1879. Notice of recent additions to the marine fauna of the eastern coast of North America, No. 7. American Journal of Science and Arts, 18:468470.Google Scholar
Verrill, A. E. 1883. Supplementary report on the “blake” cephalopods. Bulletin of the Museum of Comparative Zoology, Harvard, 11:105115.Google Scholar
Ward, P. D. 1978. Revisions to the stratigraphy and biochronology of the Upper Cretaceous Nanaimo Group, British Columbia and Wasington State. Canadian Journal of Earth Sciences, 15:405423.Google Scholar
Ward, P. D. and Saunders, W. B. 1997. Allonautilus: A new genus of living nautiloid cephalopod. Journal of Paleontology, 71:10541064.CrossRefGoogle Scholar
Wetzel, W. 1930. Die Quiriqina-Schichten als Sediment und paläontologisches Archiv. Palaeontographica, 73:49104.Google Scholar
Whiteaves, J. F. 1897. Some remains of a Sepia-like cuttlefish from the Cretaceous rocks of the South Saskatchewan. The Canadian Record of Science, 7:459462.Google Scholar
Woodward, H. 1883. On a new genus of fossil “Calamary”, from the Cretaceous formations of Sahel-Alma, near Beirut, Lebanon, Syria. Geological Magazine, New Series, 10:15.Google Scholar
Woodward, H. 1896. On a fossil octopus (Calais Newboldi J. De C. Sby, MS) from the Cretaceous of the Lebanon. Quaternary Journal of the Geological Society of London, 52:229234.Google Scholar
Yokoyama, M. 1890. Versteinerungen aus der japanischen Kreide. Palaeontographica, 36:159202.Google Scholar
Young, R. E. and Vecchione, M. 1996. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. American Malacological Bulletin, 12:91112.Google Scholar
Young, R. E., Vecchione, M., and Donovan, D. T. 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology, p. 393420. In Payne, A., Lipínski, L., Clarke, M. R., and Roeleveld, M. C. A. (eds.), Cephalopod Biodiversity, Ecology and Evolution. South African Journal of marine Science, 20.Google Scholar
Zittel, K. A. V. 1895. Mollusca, p. 386435. In Grundzüge der Palaeontologie (Palaeozoologie), Munchen, Leipzig: Druck under Verlag von R. Oldenbourg.Google Scholar