Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-26T05:53:56.462Z Has data issue: false hasContentIssue false

New Ediacaran fossils from the uppermost Blueflower Formation, northwest Canada: disentangling biostratigraphy and paleoecology

Published online by Cambridge University Press:  04 June 2015

Calla A. Carbone
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada, 〈c.carbone@queensu.ca〉; 〈narbonne@queensu.ca〉; 〈thomas.boag@mail.utoronto.ca〉
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada, 〈c.carbone@queensu.ca〉; 〈narbonne@queensu.ca〉; 〈thomas.boag@mail.utoronto.ca〉
Francis A. Macdonald
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA, 〈fmacdon@fas.harvard.edu〉
Thomas H. Boag
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada, 〈c.carbone@queensu.ca〉; 〈narbonne@queensu.ca〉; 〈thomas.boag@mail.utoronto.ca〉

Abstract

New Ediacaran fossil finds at Sekwi Brook occur in lower shoreface to offshore transition beds at the top of the Blueflower Formation, which are the most shallow-water facies and the youngest strata in which Ediacara-type fossils have been described from the Mackenzie Mountains of NW Canada. Newly discovered Ediacaran body fossils include two new tubular genera: Sekwitubulus annulatus new genus new species was a mm-diameter rigid annulated tube that was rooted to the sea bottom by a holdfast; Annulatubus flexuosus n. gen. n. sp. was a cm-diameter, flexible annulated tube. In conjunction with previously described large attachment discs representing the form-genus Aspidella and a single specimen of the dickinsonid Windermeria, these fossils define an assemblage that differs markedly from the rangeomorph-dominated deeper-water and older assemblages lower in the same section at Sekwi Brook. In contrast, trace fossils show little change upwards through the Blueflower Formation, at least in part reflecting their origin by microbial grazers on mats that formed during low-energy periods in both deep- and shallow-water environments. This implies that the stratigraphic succession of Ediacaran fossils in NW Canada and probably globally represents both evolutionary changes with age and the paleoecology of specific depositional settings.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J.D., 1989, Uppermost Proterozoic formations in central Mackenzie Mountains,Northwest Territories, Canada: Geological Survey of Canada Bulletin, v. 368, p. 126.Google Scholar
Aitken, J.D., 1991, Two late Proterozoic glaciations, Mackenzie Mountains, northwestern Canada: Geology, v. 19, p. 445448, doi: 10.1130/0091-7613(1991)019<0445:TLPGMM>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Antcliffe, J.B., and Brasier, M.D., 2008, Charnia at 50: Developmental models for Ediacaran fronds: Palaeontology, v. 51, p. 1126, doi: 10.1111/j.1475-4983.2007.00738.x.Google Scholar
Babcock, L.E., Grunow, A.M., Sadowski, G.R., and Leslie, S.A., 2005, Corumbella, a Ediacaran-grade organism from the Late Neoproterozoic of Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 220, p. 718, doi:10.1016/j.palaeo.2003.01.001.CrossRefGoogle Scholar
Billings, E., 1872, Fossils in Huronian rocks: Canadian Naturalist and Quarterly Journal of Science, v. 6, p. 478.Google Scholar
Brasier, M.D., and Antcliffe, J.B., 2009, Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis: Journal of the Geological Society, v. 166, p. 363384, doi: 10.1144/0016-76492008-011.Google Scholar
Buatois, L.A., Almond, J., and Germs, G.J.B., 2013, Environmental tolerance and range offset of Treptichnus pedum: Implications for the recognition of the Ediacaran-Cambrian boundary: Geology, v. 41, p. 519522, doi: 10.1130/G33938.1.Google Scholar
Butterfield, N.J., 2007, Macroevolution and macroecology through deep time: Palaeontology, v. 50, p. 4155, doi: 10.1111/j.1475-4983.2006.00613.x.CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J.D., Hua, H., and Xiao, S., 2011, Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shanxi Province, South China: Precambrian Research, v. 191, p. 4657, doi:10.1016/j.precamres.2011.09.002.Google Scholar
Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., Raub, T.D., and Schmitz, M.D., 2013, Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia: Geology, v. 41, p. 11271130, doi: 10.1130/G34568.1.Google Scholar
Carbone, C., and Narbonne, G.M., 2014, When life got smart: the evolution of behavioral complexity through the Ediacaran and early Cambrian of NW Canada: Journal of Paleontology, v. 88, p. 309330.Google Scholar
Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., and Yuan, X., 2014, New Ediacara fossils preserved in marine limestone and their ecological implications: Scientific Reports, v. 4, p. 110, doi:10.1038/srep04180.Google Scholar
Cohen, P.A., Bradley, A., Knoll, A.H., Grotzinger, J.P., Jensen, S., Abelson, J., Hand, K., Love, G., Metz, J., McLoughlin, N., Meister, P., Shepard, R., Tice, M., and Wilson, J.P., 2009, Tubular compression fossil from the Ediacaran Nama group, Namibia: Journal of Paleontology, v. 83, p. 110122.Google Scholar
Dalrymple, R.W., and Narbonne, G.M., 1996, Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic, Windermere Supergroup), Mackenzie Mountains, NWT: Canadian Journal of Earth Sciences, v. 33, p. 848862, doi: 10.1139/e96-064.CrossRefGoogle Scholar
Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y., 2008, Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola and Sinosabellidites from early Neoproterozoic successions in North China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 138161, doi:10.1016/j.palaeo.2007.05.019.Google Scholar
Emmons, E., 1844. The Taconic System: Based on Observations in New York, Massachusetts, Maine, Vermont and Rhode Island: Albany, Caroll and Cook, 68 p.Google Scholar
Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and Peterson, K.J., 2011, The Cambrian conundrum: Early divergence and later ecological success in the early history of animals: Science, v. 334, p. 10911097, doi: 10.1126/science.1206375.Google Scholar
Fedonkin, M.A., 1985, Soft-bodied Vendian fauna: promorphological analysis, in Sokolov, B.S. and Ivanovskiy, A.B., eds., The Vendian System 1: Historic-Geological and Palaeontological Basis: Moscow, Nauka, p. 112116.Google Scholar
Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M., and Vickers-Rich, P., 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia: Baltimore, John Hopkins University Press, 328 p.Google Scholar
Ford, T.D., 1958, Pre-Cambrian fossils from Charnwood Forest: Proceedings of the Yorkshire Geological Society, v. 3, pt. 3, no. 2, p. 211217.Google Scholar
Gehling, J.G., and Droser, M., 2013, How well do fossil assemblages of the Ediacara Biota tell time?: Geology, v. 41, p. 447450, doi: 10.1130/G33881.1.Google Scholar
Gehling, J.G., and Narbonne, G.M., 2007, Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland: Canadian Journal of Earth Sciences, v. 44, p. 367387, doi: 10.1139/e07-003.CrossRefGoogle Scholar
Gehling, J. G., Narbonne, G.M., and Anderson, M.M., 2000, The first named Ediacaran body fossil, Aspidella terranovica: Palaeontology, v. 43, p. 427456, doi: 10.1111/j.0031-0239.2000.00134.x.Google Scholar
Glaessner, M.F., and Wade, M., 1966, The Late Precambrian fossils from Ediacara, South Australia: Palaeontology, v. 9, p. 599628.Google Scholar
Grazhdankin, D.V., 2004, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution: Paleobiology, v. 30, p. 203221.Google Scholar
Grazhdankin, D., and Gerdes, G., 2007, Ediacaran microbial colonies: Lethaia, v. 40, p. 201210, doi: 10.1111/j.1502-3931.2007.00025.x.CrossRefGoogle Scholar
Grazhdankin, D.V., Balthasar, U., Nagovitsin, K.E., and Kochnev, B.B., 2008, Carbonate-hosted Avalon-type fossils in arctic Siberia: Geology, v. 36, p. 803806, doi: 10.1130/G24946A.1.Google Scholar
Hagadorn, J.W., and Waggoner, B., 2000, Ediacaran fossils from the Southwestern Great Basin, United States: Journal of Paleontology, v. 74, p. 349359.Google Scholar
Hahn, G., and Pflug, H.D., 1985, Die Cloudinidae n. fam., Kalk-Rohren aus dem Vendium und Unter-Kambrium: Senckenbergiana: Lethaea, v. 65, p. 413431.Google Scholar
Hahn, G., Hahn, R., Leonardos, O.H., Pflug, H.-D., and Walde, D.H.G., 1982, Körperlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens: Geologica et Palaeontologica, v. 16, p. 118.Google Scholar
Haldeman, S.S., 1840. Supplement to number one of “A monography of Limniades and other fresh-water univalve shells of North America,” containing descriptions of apparently new animals in different classes and the names and characters of subgenera in Paludina and Anculosa: Philadelphia, J. Dobson, 3 p.Google Scholar
Hofmann, H.J., 1981, First record of a Late Proterozoic faunal assemblage in the North American Cordillera: Lethaia, v. 14, p. 303310.Google Scholar
Hoffman, P.F., and Halverson, G.P., 2011, Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera, in Arnaud, E., Halverson, G.P., and Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations Geological Society London, Memoirs 36, p. 397411.Google Scholar
Hofmann, H.J., and Mountjoy, E.W., 2010, Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada: Canadian Journal of Earth Sciences, v. 47, p. 13051325, doi: 10.1139/E10-070.Google Scholar
Hofmann, H.J., Fritz, W.H., and Narbonne, G.M., 1983, Ediacaran (Precambrian) fossils from the Wernecke Mountains, northwestern Canada: Science, v. 221, p. 455457, doi: 10.1126/science.221.4609.455.Google Scholar
Hofmann, H. J., O’Brien, S.J., and King, A.F., 2008, Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada: Journal of Paleontology, v. 82, p. 136.Google Scholar
James, N.P., Narbonne, G.M., and Kyser, T.K., 2001, Late Neoproterozoic cap carbonates, Mackenzie Mountains, NW Canada: precipitation and global glacial meltdown: Canadian Journal of Earth Sciences, v. 38, p. 12291262, doi: 10.1139/e01-046.Google Scholar
Jenkins, R.J.F., 1988, Ediacaran succession and fossil occurrences, in Jenkins, R.J.F., and Gravestock, D.I., (compilers) Proterozoic Ediacara fauna and Cambrian Archaeocyatha of the Flinders Ranges: South Australia, Fifth International Symposium on Fossil Cnidaria, Handbook for Excursion A2, p. 117.Google Scholar
Jenkins, R.J.F., 1989, The ‘supposed terminal Precambrian extinction event’ in relation to the Cnidaria: Memoirs of the Association of Australasian Palaeontologists, v. 8, p. 307317.Google Scholar
Jenkins, R.J.F., and Gehling, J.G., 1978, A review of the frond-like fossils of the Ediacara assemblage: Records of the South Australian Museum, v. 17, p. 347359.Google Scholar
Jensen, S., Droser, M.L., and Gehling, J.G., 2006, A critical look at the Ediacaran trace fossil record, in Xiao, S., and Kaufman, J.K., eds., Neoproterozoic Geobiology and Paleobiology: Dordrecht, Springer, p. 115157.CrossRefGoogle Scholar
Knoll, A.H., Grotzinger, J.P., Kaufman, A.J., and Kolosov, P., 1995, Integrated approaches to terminal Proterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia: Precambrian Research, v. 73, p. 251270, doi:10.1016/0301-9268(94)00081-2.Google Scholar
Laflamme, M., Narbonne, G.M., and Anderson, M.M., 2004, Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland: Journal of Paleontology, v. 78, p. 827837.Google Scholar
Laflamme, M., Schiffbauer, J.D., Narbonne, G.M., and Briggs, D.E.G., 2011, Microbial biofilms and the preservation of the Ediacara biota: Lethaia, v. 44, p. 203213, doi: 10.1111/j.1502-3931.2010.00235.x.CrossRefGoogle Scholar
Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F., 2008, Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation and Weng-an, South China: Palaeontology, v. 51, p. 339366, doi: 10.1111/j.1475-4983.2008.00762.x.CrossRefGoogle Scholar
Macdonald, F. A., Strauss, J.V., Sperling, E.A., Halverson, G.P., Narbonne, G.M., Johnston, D.T., Kunzmann, M., Schrag, D.P., and Higgins, J.A., 2013, The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans and the first appearance of the Ediacara biota and bilatitarian trace fossils in northwestern Canada: Chemical Geology, v. 362, p. 250272, doi: doi:10.1016/j.chemgeo.2013.05.032.Google Scholar
MacEachern, J.A., Bann, K.L., Pemberton, S.G., and Gringras, M.K., 2005, The ichnofacies paradigm: high-resolution paleonenvironmental interpretation of the rock record, in MacEachern, J.A., Bann, K.L., Gringras, M.K., and Pemberton, S.G., eds., Applied Ichnology SEPM Short Course Notes 52, p. 3168.Google Scholar
MacNaughton, R.B., and Narbonne, G.M., 1999, Evolution and ecology of Neoproterozoic-lower Cambrian trace fossils, NW Canada: Palaios, v. 14, p. 97115.Google Scholar
MacNaughton, R.B., Narbonne, G.M., and Dalrymple, R.W., 2000, Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: Implications for passive-margin development and Ediacaran faunal ecology: Canadian Journal of Earth Sciences, v. 37, p. 9971020, doi: 10.1139/e00-012.Google Scholar
Mángano, M.G., and Buatois, L.A., 2014, Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary geobiological feedbacks: Proceedings of the Royal Society of London part B, p. 14712954, doi: 10.1098/rspb.2014.0038.Google Scholar
Mapstone, N.B., and McIlroy, D., 2006, Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from Amadeus Basin, central Australia: Precambrian Research, v. 149, p. 126148, doi:10.1016/j.precamres.2006.05.007.CrossRefGoogle Scholar
Meyer, M., Schiffbauer, J.D., Xiao, S., Cai, Y., and Hua, H., 2012, Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaaxilithes: Palaios, v. 27, p. 354372, doi: 10.2110/palo.2011.p11-098r.Google Scholar
Narbonne, G.M., 1994, New Ediacaran fossils from the Mackenzie Mountains, northwestern Canada: Journal of Paleontology, v. 68, p. 411416.Google Scholar
Narbonne, G.M., 2005, The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems: Annual Review of Earth and Planetary Sciences, v. 33, p. 421442, doi: 10.1146/annurev.earth.33.092203.122519.Google Scholar
Narbonne, G.M., 2011, Evolutionary biology: When life got big: Nature, v. 470, p. 339340, doi:10.1038/470339a.CrossRefGoogle ScholarPubMed
Narbonne, G.M. and Aitken, J.D., 1990, Ediacaran fossils from the Sekwi Brook and Mackenzie Mountains, Yukon, Canada: Palaeontology, v. 33, p. 945980.Google Scholar
Narbonne, G.M. and Aitken, J.D., 1995, Neoproterozoic of the Mackenzie Mountains, northwestern Canada: Precambrian Research, v. 73, p. 101121, doi:10.1016/0301-9268(94)00073-Z.Google Scholar
Narbonne, G.M. and Hofmann, H.J., 1987, Ediacaran biota of the Wernecke Mountains, Yukon, Canada: Palaeontology, v. 30, p. 647676.Google Scholar
Narbonne, G.M., Xiao, S., and Shields, G., 2012, Ediacaran Period, in Gradstein, F., Ogg, J., Schmidt, M.D., and Ogg, G., eds., Geologic Timescale 2012: New York, Elsevier, p. 413445, doi:10.1016/B978-0-444-59425-9.00018-4.Google Scholar
Narbonne, G.M., Laflamme, M., Trusler, P.W., Dalrymple, R.W., and Greentree, C., 2014, Deep-water Ediacaran fossils from Northwestern Canada: Taphonomy, ecology and evolution: Journal of Paleontology, v. 88, p. 207223.Google Scholar
Palij, V.M., Posti, E., and Fedonkin, M.A., 1979, Soft-bodied Metazoa and trace fossils of the Vendian and lower Cambrian, in Keller, B.M., and Rozanov, A.Y., eds., Paleontology of Upper Precambrian and Cambrian Deposits of East-European Platform Nauka, p. 4982.Google Scholar
Pemberton, S.G., MacEachern, J.A., and Frey, R.W., 1992, Trace fossils facies models: environmental and allostratigraphic significance, in Walker, R.G., and James, N.P., eds., Facies Models and Sea Level Changes: Toronto, Geological Association of Canada, p. 4772.Google Scholar
Pyle, L.J., Narbonne, G.M., James, N.P., Dalrymple, R.W., and Kaufman, A.J., 2004, Integrated Ediacaran chronostratigraphy, Wernecke Mountains, northwestern Canada: Precambrian Research, v. 132, p. 127, doi:10.1016/j.precamres.2004.01.004.Google Scholar
Roots, C.F., Martel, E., and MacNaughton, R., 2010, Geology of Sekwi Mountain, NTS 105P Southeast Mackenzie Mountains, Northwest Territories:Northwest Territories Geoscience Office, NWT Open File 2010-16, 1 map, scale 1:100,000.Google Scholar
Ross, G.M., Parrish, R.R., Villeneuve, M.E., and Bowring, S.A., 1989. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin: Western Canada: Geological Survey of Canada, Open File Report 2103.Google Scholar
Sappenfield, A., Droser, M.L., and Gehling, J.G., 2011, Problematica, trace fossils and tubes within the Ediacara Member (South Australia): Redefining the Ediacaran trace fossil record one tube at a time: Journal of Paleontology, v. 85, p. 256265.Google Scholar
Seilacher, A., 1967, Bathymetry of trace fossils: Marine Geology, v. 5, p. 413428.CrossRefGoogle Scholar
Seilacher, A., Buatois, L.A., and Mángano, M.G., 2005, Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 227, p. 323356, doi:10.1016/j.palaeo.2005.06.003.Google Scholar
Serezhnikova, E.A., 2013, Attachments of Vendian fossils: Preservation, morphology, morphotypes and possible morphogenesis: Paleontological Journal, v. 47, p. 231243, doi: 10.1134/S0031030113030088.Google Scholar
Shen, B., Xiao, S., Dong, L., Zhou, C., and Liu, J., 2007, Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: implications for their evolutionary roots and biostratigraphic significance: Journal of Paleontology, v. 81, p. 13961411.CrossRefGoogle Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M., 2008, The Avalon Explosion: Evolution of Ediacara morphospace: Science, v. 319, p. 8184, doi: 10.1126/science.1150279.Google Scholar
Skovsted, C.B., and Peel, J.S., 2011, Hyolithellus in life position from the lower Cambrian of North Greenland: Journal of Paleontology, v. 85, p. 3747.CrossRefGoogle Scholar
Sokolov, B.S., 1965, The oldest Early Cambrian deposits and sabelliditids. All-Union Symposium on the Paleontology of the Precambrian and early Cambrian: Abstracts, Novosibirsk, Institute of Geology and Geophysics, Siberian Branch of the USSR Academy of Sciences. [in Russian]. pp. 78-91.Google Scholar
Sokolov, B.S., 1967, Drevneyshiye pognofory [The oldest Pogonophora]: Doklady Akademii Nauk SSSR, v. 177, no. 1, p. 201204. (English translation, p. 252–255).Google Scholar
Sprigg, R.C., 1947, Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia: Transactions of the Royal Society of South Australia, v. 71, p. 212224.Google Scholar
Sprigg, R.C., 1949, Early Cambrian ‘jellyfishes’ of Ediacara, South Australia and Mount John, Kimberley District, Western Australia: Transactions of the Royal Society of South Australia, v. 73, p. 7299.Google Scholar
Tarhan, L.G., Droser, M.L., and Gehling, J.G., 2010, Taphonomic controls on Ediacaran diversity: Uncovering the holdfast origin of morphologically variable enigmatic structures: Palaios, v. 25, p. 823830, doi: 10.2110/palo.2010.p10-074r.Google Scholar
Torell, O.M., 1870, Petrifacta Suecana Formationis Cambricae: Årskrift, Lunds Universitetshuset, v. 6, p. 114.Google Scholar
Vinn, O., and Zatoń, M., 2012, Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences: Carnets de Géologie [Note-books on Geology], Brest, Article 2012/03 (CG2012_A03) p. 3947.Google Scholar
Waggoner, B.M., 1999, Biogeographic analyses of the Ediacara biota: A conflict with paleotectonic reconstructions: Paleobiology, v. 25, p. 440458.Google Scholar
Waggoner, B., 2003, The Ediacaran biotas in space and time: Integrative and Comparative Biology, v. 43, p. 104113, doi: 10.1093/icb/43.1.104.Google Scholar
Webby, B.D., 1970, Late Precambrian trace fossils from New South Wales: Lethaia, v. 3, p. 79109.Google Scholar
Xiao, S., and Dong, L., 2006, On the morphological and ecological history of Proterozoic macroalgae, in Xiao, S., and Kaufman, A.J., eds., Neoproterozoic Geobiology and Paleobiology Springer, p. 5790.Google Scholar
Xiao, S., and Laflamme, M., 2009, On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota: Trends in Ecology and Evolution, v. 24, p. 3140.Google Scholar
Xiao, A., Yuan, X., Steiner, M., and Knoll, A.H., 2002, Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe Biota, South China: Journal of Paleontology, v. 76, p. 347376.Google Scholar
Xiao, A., Droser, M., Gehling, J.G., Hughes, I.V., Wan, B., Chen, Z., and Yuan, X., 2013, Affirming life aquatic for the Ediacara biota in China and Australia: Geology, v. 41, p. 10951098, doi: 10.1130/G34691.1.Google Scholar
Xing, Y., Ding, Q., Luo, H., He, T., and Wang, Y., 1984, The Sinian-Cambrian Boundary of China: Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, v. 10, p. 1262.Google Scholar
Yanichevsky, M.E., 1926, Ob ostatkakh truchatykh chervej iz kembrijskoj Sinej Gliny [On remains of tube-dwelling worms from the Cambrian Blue Clay]: Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshchestva, v. 4, p. 99111.Google Scholar