Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-09T05:50:17.617Z Has data issue: false hasContentIssue false

Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies

Published online by Cambridge University Press:  20 May 2016

Joseph H. Collette
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521, USA,
Kenneth C. Gass
Affiliation:
921 11th Street South, Wisconsin Rapids, Wisconsin 54494, USA,
James W. Hagadorn
Affiliation:
Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA,

Abstract

Protichnites eremita from the Cambrian Elk Mound Group of Wisconsin is reinterpreted based on new material and trackway experiments. Two new forms of P. eremita suggest that the discrete medial imprints of these traces could be produced by the segmented postabdomen of euthycarcinoids from the same deposit. Form 1 could have been produced by a pair of euthycarcinoids traveling together, like in limulid amplexus, where both individuals made imprints with their postabdomens. In this scenario, if one individual held its postabdomen to the left side, it is possible to produce left-handed shingling in trackways and angled segmentation of each medial imprint. Form 2 could have been produced by a single animal traveling in arcing or tightly looping paths. Experimentally-produced medial imprints yield morphologies that are consistent with both trackway forms. Thus, it seems more likely that P. eremita was produced directly by the animal's body (alone or paired) rather than by employing hermit-like behavior.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, New York. 750 p.Google Scholar
Bottjer, D. and Hagadorn, J. W. 2007. Mat growth features,. p. 5371. InSchieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., and Catuneau, O.(eds.), Atlas of Microbial Mat Features Preserved Within the Clastic Rock Record. Elsevier, Amsterdam, New York.Google Scholar
Braddy, S. J. 2001. Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a ‘mass-moult-mate’ hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 172:115132.Google Scholar
Briggs, D. E. G., Bruton, D. L., and Whittington, H. G. 1979. Appendages of the arthropod Aglaspis spinifer (upper Cambrian, Wisconsin), and their significance. Palaeontology, 22:167180.Google Scholar
Brockmann, H. J. 2003. Male competition and satellite behavior,. p. 5082. InShuster, C. S., Barlow, R. B., and Brockmann, H. J.(eds.), The American Horseshoe Crab. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Chatterton, B. D. E. and Fortey, R. A. 2008. Linear clusters of articulated trilobites from Lower Ordovician (Arenig) strata at Bini Tinzoulin, North Zagora, Southern Morocco,. p. 7377. InRábano, I., Gozalo, R., and García-Bellido, D.(eds.), Advances in Trilobite Research. Cuadernos del Museo Geominero, 9.Google Scholar
Collette, J. H. and Hagadorn, J. W. 2010. Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin. Journal of Paleontology, 84:646667.Google Scholar
Collette, J. H., Hagadorn, J. W., and Lacelle, M. A. 2010. Dead in their tracks: Cambrian arthropods and their traces from intertidal sandstones of Quebec and Wisconsin. Palaios, 25:475486.Google Scholar
Dornbos, S. Q., Noffke, N., and Hagadorn, J. W. 2007. Mat-decay features,. p. 106110. InSchieber, J., Bose, P. K., Ericksson, P. G., Banerjee, S., Sarkar, S., Altermann, W., and Catuneanu, O.(eds.), Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Elsevier, Amsterdam, New York.Google Scholar
Dunlop, J. A. and Selden, P. A. 1997. The early history and phylogeny of the chelicerates,. p. 231235. InFortey, R. A., and Thomas, R. H.(eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Dunlop, J. A., Anderson, L. I., and Braddy, S. J. 2004. A redescription of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, U.S.A., with remarks on chasmataspid phylogeny. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94:207225.Google Scholar
Edgecombe, G. D. and Morgan, H. 2001. Synaustrus and the euthycarcinoid puzzle. Alcheringa, 23:193213.Google Scholar
Erickson, J. M. 2004. Earliest evidence of invertebrate sexual behavior, or a tidal flat traffic jam in the Potsdam Fm. (late Cambrian)? Geological Society of America Abstracts with Programs, 36 (5):66.Google Scholar
Gall, J-C. and Grauvogel, L. 1964. Un arthropode peu connu. le genre Euthycarcinus Handlirsch. Annales de Paléontologie, Invértebrés, 50:118.Google Scholar
Gutiérrez-Marco, J. C., , A. A., García-Bellido, D. C., Rábano, I., and Valério, M. 2009. Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology, 37:443446.Google Scholar
Hagadorn, J. W. and McDowell, C. In press. Microbial influence on erosion, grain transport, and bedform genesis in sandy unidirectional flow regimes. Sedimentology. 24 ms p.Google Scholar
Hagadorn, J. W., Collette, J. H., and Belt, E. S. 2011. Eolian-aquatic deposits and faunas of the middle Cambrian Potsdam Group. Palaios, 26:314334.Google Scholar
Hagadorn, J. W. and Seilacher, A. 2009. Hermit arthropods 500 million years ago? Geology, 37:295298.Google Scholar
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on a late Cambrian shoreline: Medusae from Central Wisconsin. Geology, 30:147150.Google Scholar
Hagadorn, J. W., MacNaughton, R. B., and Dalrymple, R. W. 2002b. The Cambrian-Ordovician advent of intertidal bioturbation: Tidal flats before and after. Geological Society of America Abstracts with Programs, 34:169170.Google Scholar
Hou, X-G., Siveter, D. J., Aldridge, R. J., and Siveter, D. J. 2008. Collective Behavior in an early Cambrian Arthropod. Science, 322:224.Google Scholar
Hoxie, C. T. 2005. Late Cambrian arthropod trackways in subaerially exposed environments: Incentives to simplify a problematic ichnogenus. Unpublished B.A. thesis, Amherst College, 89 p.Google Scholar
Logan, W. E. 1851. On the occurrence of a track and footprints of an animal in the Potsdam Sandstone of lower Canada. Geological Society of London Quarterly Journal, 7:247250.Google Scholar
MacNaughton, R. B. and Hagadorn, J. W. 2007. Report on Plaster Casts of Arthropod-Produced Trace Fossils (Protichnites) Figured in W.E. Logan's Geology of Canada (1863), and Recently Copied From Material in the Amherst College Museum of Natural History, Amherst, MA. Geological Survey of Canada Fossil Report 001-RBM-2006, 12 p.Google Scholar
MacNaughton, R. B., Cole, J. M., Dalrymple, R. B., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D. 2002. First steps on land: Arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30:391394.Google Scholar
Minter, N. J., Braddy, S. J., and Davis, R. B. 2007. Between a rock and a hard place: Arthropod trackways and ichnotaxonomy. Lethaia, 40:365375.Google Scholar
Morrissey, L. B. and Braddy, S. J. 2004. Terrestrial trace fossils from the Lower Old Red Sandstone, southwest Wales. Geological Journal, 39:315336.Google Scholar
Owen, R. 1852. Description of the impressions and footprints of the Protichnites from the Potsdam Sandstone of Canada. Geological Society of London Quarterly Journal, 8:214225.CrossRefGoogle Scholar
Schram, F. R. and Rolfe, W. D. I. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology, 56:14341450.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer, New York, New York. 226 p.Google Scholar
Seilacher, A. 2008. Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeography, Palaeoclimatology, Palaeoecology, 270:252257.Google Scholar
Seilacher, A. and Pfluger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution,. p. 97105. InKrumbein, W. E.(ed.), Biostabilization of Sediments. Oldenburg, Bibliotheks and Informationsystem del Carl von Ossietzky Universitat.Google Scholar
Shuster, C. S. and Anderson, L. 2003. A history of skeletal structure: clues to relationships among species,. p. 154188. InShuster, C. S., Barlow, R. B., and Brockmann, H. J.(eds.), The American Horseshoe Crab. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Stahnke, H. L. 1966. Some aspects of scorpion behavior. Bulletin of the Southern California Academy of Sciences, 65:6580.Google Scholar
Trewin, N. H. and McNamara, K. J. 1995. Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia. Transactions of the Royal Society of Edinburgh, Earth Sciences, 85:177210.Google Scholar
Vrazo, M. B. and Braddy, S. J. 2011. Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:6373.Google Scholar