Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-4v6tc Total loading time: 0.599 Render date: 2023-02-01T20:24:21.769Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids

Published online by Cambridge University Press:  09 May 2016

Tom Weihmann
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, United Kingdom 〈tom.weihmann@uni-koeln.de〉; 〈hhg24@cam.ac.uk〉
Hanns Hagen Goetzke
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, United Kingdom 〈tom.weihmann@uni-koeln.de〉; 〈hhg24@cam.ac.uk〉
Michael Günther
Affiliation:
Institute of Sport and Motion Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany 〈s7gumi@uni-jena.de〉

Abstract

Modern computer-aided techniques foster the availability and quality of 3D visualization and reconstruction of extinct and extant species. Moreover, animated sequences of locomotion and other movements find their way into motion pictures and documentary films, but also gain attraction in science. While movement analysis is well advanced in vertebrates, particularly in mammals and birds, analyses in arthropods, with their much higher variability regarding general anatomy and size, are still in their infancies and restricted to a few laboratory species. These restrictions and deficient understanding of terrestrial arthropod locomotion in general impedes sensible reconstruction of movements in those species that are not directly observable (e.g., extinct and cryptic species). Since shortcomings like over-simplified approaches to simulate arthropod locomotion became obvious recently, in this review we provide insight into physical, morphological, physiological, behavioral, and ecological constraints, which are essential for sensible reconstructions of terrestrial arthropod locomotion. Such concerted consideration along with sensible evaluations of stability and efficiency requirements can pave the way to realistic assessment of leg coordination and body dynamics.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ache, J.M., and Matheson, T., 2012, Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb: Journal of Neurophysiology, v. 107, p. 27562768.CrossRefGoogle Scholar
Alexander, R.M., 1977, Mechanics and scaling of terrestrial locomotion, in Pedley, T.J., ed., Scale Effects in Animal Locomotion, New York, Academic Press, p. 93110.Google Scholar
Alexander, R.M., and Bennet-Clark, H.C., 1977, Storage of elastic strain energy in muscle and other tissues: Nature, v. 265, p. 114117.CrossRefGoogle ScholarPubMed
Anderson, J.F., and Prestwich, K.N., 1975, The fluid pressure pumps of spiders (Chelicerata, Araneae): Zeitschrift für Morphologie der Tiere, v. 81, p. 257277.CrossRefGoogle Scholar
Arditti, J., Elliott, J., Kitching, I.J., and Wasserthal, L.T., 2012, ‘Good Heavens what insect can suck it’–Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta: Botanical Journal of the Linnean Society, v. 169, p. 403432.CrossRefGoogle Scholar
Barth, F.G., 2002, A Spider’s World Senses and Behavior, Berlin, Springer, 394 p.CrossRefGoogle Scholar
Biancardi, C.M., Fabrica, C.G., Polero, P., Loss, J.F., and Minetti, A.E., 2011, Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma: Journal of Experimental Biology, v. 214, p. 34333442.CrossRefGoogle ScholarPubMed
Biewener, A., 1990, Biomechanics of mammalian terrestrial locomotion: Science, v. 250, p. 10971103.CrossRefGoogle ScholarPubMed
Biewener, A., 2003, Animal Locomotion: Oxford University Press, 294 p.Google ScholarPubMed
Blickhan, R., 1989, The spring-mass model for running and hopping: Journal of Biomechanics, v. 22, p. 12171227.CrossRefGoogle ScholarPubMed
Blickhan, R., and Full, R.J., 1987, Locomotion energetics of the ghost crab: II Mechanics of the center of mass: Journal of Experimental Biology, v. 130, p. 155174.Google Scholar
Blickhan, R., and Full, R.J., 1993, Similarity in multilegged locomotion: bouncing like a monopode: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 173, p. 509517.CrossRefGoogle Scholar
Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., and Günther, M., 2007, Intelligence by mechanics: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, v. 365, p. 199220.CrossRefGoogle Scholar
Bowerman, R.F., 1975, The control of walking in the scorpion: Journal of Comparative Physiology, v. 100, p. 197209.CrossRefGoogle Scholar
Brüssel, A., 1987, Belastungen und Dehnungen im Spinnenskelett unter natürlichen Verhaltensbedingungen [Dissertation]: Frankfurt am Main, J.W.Goethe Universität, 178 p.Google Scholar
Bullard, B., Garcia, T., Benes, V., Leake, M.C., Linke, W.A., and Oberhauser, A.F., 2006, The molecular elasticity of the insect flight muscle proteins projectin and kettin: Proceedings of the National Academy of Sciences, v. 103, p. 44514456.CrossRefGoogle ScholarPubMed
Burden, S.A., 2014, A Hybrid Dynamical Systems Theory for Legged Locomotion [Ph.D. dissertation]: University of California, Berkeley, 123 p.Google Scholar
Cavagna, G.A., Saibene, F.P., and Margaria, R., 1964, Mechanical work in running: Journal of Applied Physiology, v. 19, p. 249256.Google ScholarPubMed
Clarke, J., 1986, The comparative functional morphology of the leg joints and muscles of five spiders: Bulletin of the British Arachnological Society, v. 7, p. 3747.Google Scholar
Cruse, H., 1976, The function of the legs in the free walking stick insect, Carausius morosus: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 112, p. 235262.CrossRefGoogle Scholar
Cruse, H., Dürr, V., and Schmitz, J., 2007, Insect walking is based on a decentralized architecture revealing a simple and robust controller: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science, v. 365, p. 221250.CrossRefGoogle ScholarPubMed
De Groote, F., Jonkers, I., and Duysens, J., 2014, Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait: Frontiers in Computational Neuroscience, v. 8, 11 p.CrossRefGoogle Scholar
Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., and Lehman, S., 2000, How animals move: An integrative view: Science, v. 288, p. 100106.CrossRefGoogle Scholar
Dudek, D.M., and Full, R.J., 2006, Passive mechanical properties of legs from running insects: Journal of Experimental Biology, v. 209, p. 15021515.CrossRefGoogle ScholarPubMed
Dudek, D.M., and Full, R.M., 2007, An isolated insect leg’s passive recovery from dorso-ventral perturbations: Journal of Experimental Biology, v. 210, p. 32093217.CrossRefGoogle ScholarPubMed
Dunlop, J.A., and Brauckmann, C., 2006, A new trigonotarbid arachnid from the Coal Measures of Hagen-Vorhalle, Germany: Fossil Record, v. 9, p. 130136.CrossRefGoogle Scholar
Ehlers, M., 1939, Untersuchungen über Formen aktiver Lokomotion bei Spinnen: Zoologische Jahrbücher: Abteilung für Systematik, Oekologie und Geographie der Tiere, v. 72, p. 373499.Google Scholar
Endlein, T., and Federle, W., 2008, Walking on smooth or rough ground: passive control of pretarsal attachment in ants: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 194, p. 4960.CrossRefGoogle ScholarPubMed
Falkingham, P., 2014, Interpreting ecology and behavior from the vertebrate fossil track record: Journal of Zoology, v. 292, p. 222228.CrossRefGoogle Scholar
Fayers, S.R., and Trewin, N.H., 2003, A review of the palaeoenvironments and biota of the Windyfield chert: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 94, p. 325339.Google Scholar
Ferdinand, W., 1981, Die Lokomotion der Krabbenspinnen (Araneae, Thomisidae) und das Wilsonsche Modell der metachronen Koordination: Zoologische Jahrbucher Abteilung fuer Allgemeine Zoologie und Physiologie der Tiere, v. 85, p. 4665.Google Scholar
Fischer, M.S., and Blickhan, R., 2006, The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization—a review: Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, v. 305, p. 935952.CrossRefGoogle ScholarPubMed
Fröhlich, A., 1978, Verhaltensphysiologische Untersuchungen zur Lokomotion der Spinnen Agelena labyrinthica Cl. und Sitticus pubescens F. [Inaugural-Dissertation]: Berlin, FU – Berlin, 129 p.Google Scholar
Fröschl, M., Handschuh, S., Erlach, R., Schwaha, T., Goldammer, H., Fragner, R., and Walzl, M.G., 2014, Computer-generated images of microscopic soil organisms for documentary films: Soil Organisms, v. 86, p. 95102.Google Scholar
Full, R.J., and Koditschek, D.E., 1999, Templates and anchors: neuromechanical hypotheses of legged locomotion on land: Journal of Experimental Biology, v. 202, p. 33253332.Google ScholarPubMed
Full, R.J., and Koehl, M.A.R., 1992, Drag and lift on running insects: Journal of Experimental Biology, v. 176, p. 89101.Google Scholar
Full, R.J., Blickhan, R., and Ting, L.H., 1991, Leg design in hexapedal runners: Journal of Experimental Biology, v. 158, p. 369390.Google ScholarPubMed
Fusi, L., Brunello, E., Reconditi, M., Piazzesi, G., and Lombardi, V., 2014, The non-linear elasticity of the muscle sarcomere and the compliance of myosin motors: Journal of Physiology, v. 592, p. 11091118.CrossRefGoogle ScholarPubMed
Garwood, R., and Dunlop, J., 2014, The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids: Journal of Paleontology, v. 88, p. 735746.CrossRefGoogle Scholar
Geyer, H., Seyfarth, A., and Blickhan, R., 2003, Positive force feedback in bouncing gaits?: Proceedings of the Royal Society B: Biological Sciences, v. 270, p. 21732183.CrossRefGoogle ScholarPubMed
Geyer, H., Seyfarth, A., and Blickhan, R., 2005, Spring-mass running: simple approximate solution and application to gait stability: Journal of Theoretical Biology, v. 232, p. 315328.CrossRefGoogle ScholarPubMed
Goyens, J., Dirckx, J., Aerts, P., and Davidowitz, G., 2015, Costly sexual dimorphism in Cyclommatus metallifer stag beetles: Functional Ecology, v. 29, p. 3543.CrossRefGoogle Scholar
Gradstein, F., and Ogg, J., 2004, Geologic time scale 2004–why, how, and where next!: Lethaia, v. 37, p. 175181.CrossRefGoogle Scholar
Grimmer, S., Ernst, M., Günther, M., and Blickhan, R., 2008, Running on uneven ground: leg adjustment to vertical steps and self-stability: Journal of Experimental Biology, v. 211, p. 29893000.CrossRefGoogle ScholarPubMed
Günther, M., and Weihmann, T., 2011, The load distribution among three legs on the wall: model predictions for cockroaches: Archive of Applied Mechanics, v. 81, p. 12691287.CrossRefGoogle Scholar
Günther, M., and Weihmann, T., 2012, Climbing in hexapods: a plain model for heavy slopes: Journal of Theoretical Biology, v. 293, p. 8286.CrossRefGoogle ScholarPubMed
Günther, M., Keppler, V., Seyfarth, A., and Blickhan, R., 2004, Human leg design: optimal axial alignment under constraints: Journal of Mathematical Biology, v. 48, p. 623646.CrossRefGoogle ScholarPubMed
Guo, S., Chang, J., Yang, X., Wang, W., and Zhang, J., 2014, Locomotion skills for insects with sample-based controller: Computer Graphics Forum, v. 33, p. 3140.CrossRefGoogle Scholar
Haeufle, D.F.B., Günther, M., Wunner, G., and Schmitt, S., 2014, Quantifying control effort of biological and technical movements: An information-entropy-based approach: Physical Review E, 89:1:012716, http://dx.doi.org/10.1103/PhysRevE.89.012716.CrossRefGoogle ScholarPubMed
Hill, D.A., 2006, Targeted jumps by salticid spiders (Araneae, Salticidae, Phidippus). Peckhamia Version 9, p. 1–28, http://www.peckhamia.com/epublications/Hill%202006%20Targeted%20jumps%20by%20salticid%20spiders%20V9%20EB%20PDF.pdf.Google Scholar
Hooper, S.L., Guschlbauer, C., Blumel, M., Rosenbaum, P., Gruhn, M., Akay, T., and Buschges, A., 2009, Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals: Journal of Neuroscience, v. 29, p. 41094119.CrossRefGoogle ScholarPubMed
Hughes, G.M., 1952, The co-ordination of insect movements. I: The walking movements of insects: Journal of Experimental Biology, v. 29, p. 267284.Google Scholar
Ijspeert, A.J., 2008, Central pattern generators for locomotion control in animals and robots: a review: Neural Networks, v. 21, p. 642653.CrossRefGoogle ScholarPubMed
Jacobi-Kleemann, M., 1953, Über die Locomotion der Kreuzspinne Aranea diadema beim Netzbau (nach Filmanalysen): Journal of Comparative Physiology, v. 34, P. 606654.Google Scholar
Lewis, J.G.E., 1981, The Biology of Centipedes, Cambridge, UK, Cambridge University Press, 476 p.CrossRefGoogle Scholar
Lipfert, S.W., Günther, M., Renjewski, D., and Seyfarth, A., 2014, Impulsive ankle push-off powers leg swing in human walking: Journal of Experimental Biology, v. 217, p. 12181228.CrossRefGoogle ScholarPubMed
Maier, L., Root, T.M., and Seyfarth, E.A., 1987, Heterogeneity of spider leg muscle: Histochemistry and electrophysiology of identified fibers in the claw levator: Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, v. 157, p. 285294.CrossRefGoogle Scholar
Manton, S.M., 1950, The evolution of arthropodan locomotory mechanisms.—Part I. The locomotion of Peripatus: Zoological Journal of the Linnean Society, v. 41, p. 529570.CrossRefGoogle Scholar
Manton, S.M., 1952, The evolution of arthropodan locomotory mechanisms.—Part 2. General introduction to the locomotory mechanisms of the arthropoda: Zoological Journal of the Linnean Society, v. 42, p. 93117.CrossRefGoogle Scholar
Manton, S.M., 1977, The Arthropoda: Habits, Functional Morphology, and Evolution, Oxford, Clarendon Press, 527 p.Google Scholar
Melchers, M., 1967, Der Beutefang von Cupiennius salei Keyserling (Ctenidae): Zeitschrift für Morphologie und Ökologie der Tiere, v. 58, p. 321346.CrossRefGoogle Scholar
Mendes, C.S., Bartos, I., Akay, T., Márka, S., and Mann, R.S., 2013, Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster: eLife, 2013:2:e00231, doi: http://dx.doi.org/10.7554/eLife.00231.001.Google Scholar
Minter, N.J., Mángano, M.G., and Caron, J.-B., 2012, Skimming the surface with Burgess Shale arthropod locomotion: Proceedings of the Royal Society B: Biological Sciences, v. 279, p. 16131620.CrossRefGoogle ScholarPubMed
Mochon, S., and McMahon, T.A., 1980, Ballistic walking: Journal of Biomechnics, v. 13, p. 4957.CrossRefGoogle ScholarPubMed
Moffett, S., and Doell, G. S., 1980, Alteration of locomotor behavior in wolf spiders carrying normal and weighted egg cocoons: Journal of Experimental Zoology, v. 213, p. 219226.CrossRefGoogle Scholar
Moll, K., Roces, F., and Federle, W., 2013, How load-carrying ants avoid falling over: mechanical stability during foraging in Atta vollenweideri grass-cutting ants: PLoS One, 8:1:e52816, doi:10.1371/journal.pone.0052816.CrossRefGoogle ScholarPubMed
Parry, D.A., and Brown, R.H.J., 1959a, The hydraulic mechanism of the spider leg: Journal of Experimental Biology, v. 36, p. 423433.Google Scholar
Parry, D.A., and Brown, R.H.J., 1959b, The jumping mechanism of salticid spiders: Journal of Experimental Biology, v. 36, p. 654664.Google Scholar
Patek, S., Dudek., D., and Rosario, M., 2011, From bouncy legs to poisoned arrows: elastic movements in invertebrates: Journal of Experimental Biology, v. 214, p. 19731980.CrossRefGoogle ScholarPubMed
Piazzesi, G., Reconditi, M., Linari, M., Lucii, L., Bianco, P., Brunello, E., Decostre, V., Stewart, A., Gore, D.B., and Irving, T.C., 2007, Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size: Cell, v. 131, p. 784795.CrossRefGoogle ScholarPubMed
Pohl, H., Wipfler, B., Grimaldi, D., Beckmann, F., and Beutel, R.G., 2010, Reconstructing the anatomy of the 42-million-year-old fossil—Mengea tertiaria (Insecta, Strepsiptera): Naturwissenschaften, v. 97, p. 855859.CrossRefGoogle Scholar
Prange, H.D., 1977, The Scaling and Mechanics of Arthropod Exoskeletons, in Pedley, T.J., ed., Scale Effects in Animal Locomotion, London, Academic Press, p. 169181.Google Scholar
Reinhardt, L., Weihmann, T., and Blickhan, R., 2009, Dynamics and kinematics of ant locomotion: do wood ants climb on level surfaces?: Journal of Experimental Biology, v. 212, p. 24262435.CrossRefGoogle ScholarPubMed
Ringrose, R.P., 1997, Self-stabilizing Running, Boston, Massachusetts Institute of Technology, 131 p.Google Scholar
Rode, C., Siebert, T., Herzog, W., and Blickhan, R., 2009, The effects of parallel and series elastic components on the active cat soleus force-length relationship: Journal of Mechanics in Medicine and Biology, v. 9, p. 105122.CrossRefGoogle Scholar
Rosenfeld, E.V., and Günther, M., 2014, An enhanced model of cross-bridge operation with internal elasticity: European Biophysics Journal, v. 43, p. 131141.CrossRefGoogle ScholarPubMed
Rovner, J.S., 1980, Morphological and ethological adaptations for prey capture in wolf spiders (Aranae, Lycosidae): Journal of Arachnology, v. 8, p. 201215.Google Scholar
Ruhland, M., and Rathmayer, W., 1978, Die Beinmuskulatur und ihre Innervation bei der Vogelspinne Dugesiella hentzi (Ch.) (Araneae, Aviculariidae): Zoomorphologie, v. 89, p. 3346.CrossRefGoogle Scholar
Ruina, A., Bertram, J.E., and Srinivasan, M., 2005, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition: Journal of Theoretical Biology, v. 237, p. 170192.CrossRefGoogle ScholarPubMed
Schmitt, J., and Bonnono, S., 2009, Dynamics and stability of lateral plane locomotion on inclines: Journal of Theoretical Biology, v. 261, p. 598609.CrossRefGoogle ScholarPubMed
Schmitt, J., and Holmes, P., 2000, Mechanical models for insect locomotion: dynamics and stability in the horizontal plane-II. Application: Biological Cybernetics, v. 83, p. 517527.CrossRefGoogle ScholarPubMed
Sens, J., 1996, Funktionelle Anatomie und Biomechanik der Laufbeine einer Vogelspinne [Dissertation]:, Saarbrücken, Universität des Saarlandes, Saarbrücken, 344 p.Google Scholar
Sensenig, A.T., and Shultz, J.W., 2003, Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids: Journal of Experimental Biology, v. 206, p. 771784.CrossRefGoogle ScholarPubMed
Sensenig, A.T., and Shultz, J.W., 2006, Mechanical energy oscillations during locomotion in the harvestman Leiobunum vittatum (Opiliones): Journal of Arachnology, v. 34, p. 627633.CrossRefGoogle Scholar
Seyfarth, A., Günther, M., and Blickhan, R., 2001, Stable operation of an elastic three-segment leg: Biological Cybernetics, v. 84, p. 365382.CrossRefGoogle ScholarPubMed
Seyfarth, A., Geyer, H., Günther, M., and Blickhan, R., 2002, A movement criterion for running: Journal of Biomechanics, v. 35, p. 649655.CrossRefGoogle ScholarPubMed
Shultz, J.W., 1987, Walking and surface film locomotion in terrestrial and semiaquatic spiders: Journal of Experimental Biology, v. 128, p. 427444.Google Scholar
Shultz, J.W., 1989, Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications: Zoological Journal of the Linnean Society, v. 97, p. 156.CrossRefGoogle Scholar
Siebert, T., Weihmann, T., Rode, C., and Blickhan, R., 2010, Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles: Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, v. 180, p. 199209.CrossRefGoogle ScholarPubMed
Spagna, J.C., Goldman, D.I., Lin, P.C., Koditschek, D.E., and Full, R.J., 2007, Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain: Bioinspiration & Biomimetics, v. 2, p. 918.CrossRefGoogle ScholarPubMed
Spagna, J.C., Valdivia, E.A., and Mohan, V., 2011, Gait characteristics of two fast-running spider species (Hololena adnexa and Hololena curta), including an aerial phase (Araneae: Agelenidae): Journal of Arachnology, v. 39, p. 8491.CrossRefGoogle Scholar
Sponberg, S., and Full, R.J., 2008, Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain: Journal of Experimental Biology, v. 211, p. 433446.CrossRefGoogle ScholarPubMed
Stewert, D.M., and Martin, A.W., 1974, Blood pressure in the tarantula Dugesiella hentzi: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 88, p. 141172.CrossRefGoogle Scholar
Sutton, M.D., 2008, Tomographic techniques for the study of exceptionally preserved fossils: Proceedings of the Royal Society B: Biological Sciences, v. 275, p. 15871593.CrossRefGoogle ScholarPubMed
Ting, L.H., Blickhan, R., and Full, R.J., 1994, Dynamic and static stability in hexapedal runners: Journal of Experimental Biology, v. 197, p. 251269.Google ScholarPubMed
Wahl, V., Pfeffer, S.E., and Wittlinger, M., 2015, Walking and running in the desert ant Cataglyphis fortis: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 201, p. 645656.CrossRefGoogle ScholarPubMed
Ward, T.M., and Humphreys, W.F., 1981, Locomotion in burrowing and vagrant wolf spiders (Lycosidae): Journal of Experimental Biology, v. 92, p. 305321.Google Scholar
Weihmann, T., 2007, Biomechanische Analyse der ebenen Lokomotion von Ancylometes bogotensis (Keyserling, 1877) (Chelicerata, Arachnida, Lycosoidea) [doctoral thesis]:, Jena, Friedrich-Schiller-Universität, 99 p. urn:nbn:de:gbv:27-20080418-114748-4.Google Scholar
Weihmann, T., 2013, Crawling at High Speeds: Steady Level Locomotion in the Spider Cupiennius salei—Global Kinematics and Implications for Centre of Mass Dynamics: PLoS One, 8:6:e65788, doi:10.1371/journal.pone.0065788.CrossRefGoogle ScholarPubMed
Weihmann, T., Günther, M., and Blickhan, R., 2012, Hydraulic leg extension is not necessarily the main drive in large spiders: Journal of Experimental Biology, v. 215, p. 578583.CrossRefGoogle Scholar
Weihmann, T., Karner, M., Full, R.J., and Blickhan, R., 2010, Jumping kinematics in the wandering spider Cupiennius salei: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, v. 196, p. 421438.CrossRefGoogle ScholarPubMed
Weihmann, T., Siebert, T., and Blickhan, R., 2009, Muscle properties of the tibia-metatarsus joint flexors in the labidognath spider Cupiennius salei: Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, v. 153, p. 124125.CrossRefGoogle Scholar
Wendler, G., 1964, Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen: Zeitschrift für vergleichende Physiologie, v. 48, p. 198250.CrossRefGoogle Scholar
Wilson, D.M., 1967, Stepping patterns in tarantula spiders: Journal of Experimental Biology, v. 47, p. 133151.Google Scholar
Wosnitza, A., Bockemühl, T., Dübbert, M., Scholz, H., and Büschges, A., 2013, Inter-leg coordination in the control of walking speed in Drosophila: Journal of Experimental Biology, v. 216, p. 480491.CrossRefGoogle ScholarPubMed
Wu, G.C., Wright, J.C., Whitaker, D.L., and Ahn, A.N., 2010, Kinematic evidence for superfast locomotory muscle in two species of teneriffiid mites: Journal of Experimental Biology, v. 213, p. 25512556.CrossRefGoogle ScholarPubMed
Zollikofer, C., 1994, Stepping patterns in ants—influence of load: Journal of Experimental Biology, v. 192, p. 119127.Google ScholarPubMed
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *