Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-pkshj Total loading time: 0.301 Render date: 2021-12-04T11:04:26.436Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction

Published online by Cambridge University Press:  20 May 2016

John R. Groves
Affiliation:
Carmeuse Lime and Stone, Technology Center, 3600 Neville Road, Pittsburgh, Pennsylvania, 15225, USA,
Yue Wang
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, 39 East Beijing Road, Nanjing 210008, China

Abstract

A comprehensive, high resolution stratigraphic database of fusulinoidean foraminifers reveals that this group of protists suffered extreme losses during the Guadalupian extinction. Most species (88%) were eliminated gradually over the course of 9 myr during the Wordian and Capitanian ages. A pulse of greatly elevated per capita extinction frequency occurred during the last million years of the Capitanian (260–259 Ma). Contrary to prevailing opinion, the end-Capitanian event did not preferentially eliminate large, morphologically complex species in the families Schwagerinidae and Neoschwagerinidae, because most species in those families were already extinct. Rather, 69 percent of the species eliminated at the end of the Capitanian were small, morphologically conservative representatives of the Ozawainellidae, Schubertellidae and Staffellidae. Survivors from these families comprised the low-diversity association of Wuchiapingian fusulinoideans. Schubertellids, and to a lesser extent ozawainellids, diversified in the late Wuchiapingian and Changhsingian ages before the final demise of fusulinoideans during the end-Permian mass extinction. The Wordian–Capitanian fusulinoidean attrition might have been caused by photosymbiont loss and habitat reduction stemming from an interval of global cooling termed the Kamura event (∼265–259.5 Ma), although the onset of fusulinoidean diversity decline predates geochemical evidence for the beginning of the Kamura event by ∼3 myr. The end-Capitanian extinction pulse might reflect environmental deterioration from the combined effects of global cooling, Emeishan effusive volcanism and sea-level lowstand.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bond, D. P. G. and Wignall, P. B. 2009. Latitudinal selectivity of foraminifer extinctions during the late Guadalupian crisis. Paleobiology, 35:465483.CrossRefGoogle Scholar
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H.-S., Lai, X.-L., Sun, Y.-D., Newton, R. J., Shao, L.-Y., Védrine, S., and Cope, H. 2010. The mid-Capitanian (Middle Parmian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:282294.CrossRefGoogle Scholar
Chedia, I. O., Bogoslovskaya, M. F., Davydov, V. I., and Dmitriev, V. Vu. 1986. Fusulinids and ammonoids in the type section of the Kubergandian Stage (southeastern Pamirs). Ezhegodnik Vsesoyuznogo Paleontologicheskogo Obshestva, Leningrad Izdatel'stvo “Nauka,” 29:2853. (In Russian)Google Scholar
Clapham, M. E., Shen, S., and Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology, 35:3250.CrossRefGoogle Scholar
Courtillot, V., Jaupart, C., Manighetti, I., Tapponier, P., and Besse, J. 1999. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters, 166:177195.CrossRefGoogle Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems, p. 74102. InErwin, D. H., and Wing, S. L.(eds.), Deep Time: Paleobiology's Perspective. Paleobiology, 26 (supplement to no. 4).Google Scholar
Groves, J. R. and Wang, Y. 2009. Foraminiferal diversification during the late Paleozoic ice age. Paleobiology, 35:367392.CrossRefGoogle Scholar
Hallam, A. and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.Google Scholar
Hallam, A. and Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews, 48:217250.CrossRefGoogle Scholar
Hallock, P. 1999. Symbiont-bearing foraminifera, p. 123140. InSen Gupta, B. K.(ed.), Modern foraminifera. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar
Hallock, P. 2000. Symbiont-bearing foraminifera: harbingers of global change, p. 95104. InLee, J. J. and Hallock, P.(eds.), Advances in the biology of foraminifera. Micropaleontology 46 (supplement 1).Google Scholar
Hallock, P., Premoli Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:4964.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4 (1):9p. (http://palaeo-electronica.org/2001_1/past/issue1_01.htm).Google Scholar
Haq, B. and Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322:6468.CrossRefGoogle ScholarPubMed
Isozaki, Y. and Aljinović, D. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 284:1121.CrossRefGoogle Scholar
Isozaki, Y., Aljinović, D., and Kawahata, H. 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 308:1221.CrossRefGoogle Scholar
Isozaki, Y., Kawahata, H., and Minoshima, K. 2007. The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic–Mesozoic transition. Palaeoworld, 16:1630.CrossRefGoogle Scholar
Jin, Y., Zhang, J., and Shang, Q.-H. 1994. Two phases of end-Permian mass extinction. Canadian Society of Petroleum Geologists Memoir, 17:813822.Google Scholar
Jin, Y., Zhang, J., and Shang, Q.-H. 1995. Pre-Lopingian catastrophic event of marine faunas. Acta Palaeontologica Sinica, 34:410427.Google Scholar
Jin, Y., Shen, S., Henderson, C. M., Wang, X., Wang, W., Wang, Y., Cao, C., and Shang, Q. 2006. The global stratotype section and point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes, 29:253262.Google Scholar
Kemple, W. G., Sadler, P. M., and Strauss, D. J. 1995. Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimization, p. 6582. InMann, K. O. and Lane, H. R.(eds.), Graphic correlation. SEPM Special Publication 53.Google Scholar
Kobayashi, F. 2006. Middle Permian foraminifers of the Izuru and Nabeyama formations in the Kuzu area, central Japan, part 2. Schubertellid and ozawainellid fusulinoideans and non-fusulinoidean foraminifers. Paleontological Research, 10:6177.CrossRefGoogle Scholar
Kobayashi, F. 2012. Middle and Late Permian foraminifers from the Chichibu Belt, Takachiho area, Kyushu, Japan—their implications for Middle and Late Permian faunal events. Journal of Paleontology, 86:669687.CrossRefGoogle Scholar
Kobayashi, F. and Ishii, K.-I. 2003. Permian fusulinaceans of the Surmaq Formation in the Abadeh region, central Iran. Rivista Italiana di Paleontologia e Stratigrafia, 109:307337.Google Scholar
Kobayashi, F., Shiino, Y., and Suzuki, Y. 2009. Middle Permian (Midian) foraminifers of the Kamiyasse Formation in the southern Kitakami terrane, NE Japan. Paleontological Research, 13:7999.CrossRefGoogle Scholar
Kolodka, C., Vennin, E., Vachard, D., Trocme, V., and Goodarzi, M. H. 2012. Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils. Facies, 58:131153.CrossRefGoogle Scholar
Lai, X., Wang, W., Wignall, P. B., Bond, D. P. G., Jiang, H., Ali, J. R., John, E. H., and Sun, Y. 2008. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 269:7893.CrossRefGoogle Scholar
Langer, M. R. and Hottinger, L. 2000. Biogeography of selected “larger” foraminifera, p. 105126. InLee, J. J. and Hallock, P.(eds.), Advances in the biology of foraminifera. Micropaleontology, 46 (supplement 1).Google Scholar
Leven, E. Ja. 1997. Permian stratigraphy and Fusulinida of Afghanistan with their paleogeographic and paleotectonic implications. Geological Society of America Special Paper 316, 134p.Google Scholar
Leven, E. Ja. 1998. Permian fusulinid assemblages and stratigraphy of the Transcaucasia. Rivista Italiana di Paleontologia e Stratigrafia, 104:299328.Google Scholar
Leven, E. Ja. and Gorgij, M. N. 2008. Bolorian and Kubergandian stages of the Permian in the Sanandai-Sirjan zone of Iran. Stratigraphy and Geological Correlation, 16:455466.CrossRefGoogle Scholar
Miller, F. X. 1977. The graphic correlation method in biostratigraphy, p. 165186. InKauffman, E. G. and Hazel, J. E.(eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchison and Ross, Stroudsburg, Pennsylvania.Google Scholar
Mundil, R., Denyszyn, S. W., He, B., Metcalfe, I., and Xu, Y. 2010. Emeishan volcanism and the end-Guadalupian extinction: new U-Pb TIMS ages. Geophysical Research Abstracts, 12, EGU2010-3796-3.Google Scholar
Mundil, R., Denyszyn, S. W., Shellnutt, J. G., Jost, A. B., Payne, J. L., Renne, P. R., He, B., Zhong, Y., and Xu, Y. 2012. Timing of Emeishan magmatic activity and implications for the end-Middle Permian biotic crisis. Geophysical Research Abstracts, 12, EGU2012-6760-1.Google Scholar
Nestell, G. P. and Nestell, M. K. 2006. Middle Permian (Late Guadalupian) foraminifers from Dark Canyon, Guadalupe Mountains, New Mexico. Micropaleontology, 52:150.CrossRefGoogle Scholar
Ota, A. and Isozaki, Y. 2006. Fusuline biotic turnover across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic carbonate buildups: biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Sciences, 26:353368.CrossRefGoogle Scholar
Ross, C. A. 1995. Permian fusulinaceans, p. 167185. InScholle, P. A., Peryt, T. M. and Ulmer-Scholle, D. S.(eds.), The Permian of Northern Pangea, 1. Paleogeography, Paleoclimates, Stratigraphy. Springer, New York.CrossRefGoogle Scholar
Sadler, P. M., Kemple, W. G., and Kooser, M. A. 2003. CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization, p. 461–465, and CD. InHarries, P.(ed.), High resolution stratigraphic approaches in paleontology. Plenum Press, Topics in Geobiology, 21.Google Scholar
Shaw, A. B. 1964. Time in Stratigraphy. McGraw-Hill, New York.Google Scholar
Shellnutt, J. G., Denyszyn, S. W., and Mundil, R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research, 22:118126.CrossRefGoogle Scholar
Shen, S.-Z. and Shi, G. R. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 18:152161.CrossRefGoogle Scholar
Shen, S.-Z., Henderson, C. M., Bowring, S. A., Cao, C.-Q., Wang, Y., Wang, W., Zhang, H., Zhang, Y.-C., and Mu, L. 2010. High-resolution Lopingian (Late Permian) timescale of South China. Geological Journal, 45:122134.CrossRefGoogle Scholar
Sheng, J. and Rui, L. 1984. Fusulinaceans from Upper Permian Changhsingian in Mingshan Coal Field of Leping, Jiangxi. Acta Micropaleontologica Sinica, 1:3046. (In Chinese)Google Scholar
Stanley, S. M. and Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science, 266:13401344.CrossRefGoogle ScholarPubMed
Wang, X.-D. and Sugiyama, T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 33:285294.Google Scholar
Wang, X.-D. and Sugiyama, T. 2001. Middle Permian rugose corals from Laibin, Guangxi, South China. Journal of Paleontology, 75:758782.CrossRefGoogle Scholar
Wang, Y., Ueno, K., Zhang, Y.-C., and Cao, C.-Q. 2010. The Changhsingian foraminiferal fauna of a Neotethyan seamount: the Gyanyima Limestone along the Yarlung-Zangbo suture in southern Tibet, China. Geological Journal, 45:308318.CrossRefGoogle Scholar
Wang, Y., Shen, S.-Z., Cao, C.-Q., Wang, W., Henderson, C. M. and Jin, Y. 2006. The Wuchiapingian–Changhsingian boundary (Upper Permian) at Meishan of Changxing County, South China. Journal of Asian Earth Sciences, 26:575583.Google Scholar
Wignall, P. B., Sun, Y., Bong, D. P. G., Izon, G., Newton, R. J., Védrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H., and Bottrell, S. H. 2009. Volcanism, mass extinction and carbon isotope fluctuations in the Middle Permian of China. Science, 324:11791182.CrossRefGoogle ScholarPubMed
Wignall, P. B., Bond, D. P. G., Haas, J., Wang, W., Jiang, H., Lai, X., Altinar, D., Védrine, S., Hips, K., Zajzon, N., Sun, Y., and Newton, R. J. 2012. Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies and δ13C study from Hungary and Hydra Island (Greece). Palaios, 27:7889.CrossRefGoogle Scholar
Wilde, G. L. 2000. Formal Middle Permian (Guadalupian) Series: a fusulinacean perspective, p. 89100. InWardlaw, B. R., Grant, R. E., and Rohr, D. M.(eds.), The Guadalupian Symposium. Smithsonian Contributions to the Earth Sciences, 32.Google Scholar
Wilde, G. L. 2002. End Permian: end fusulinaceans, p. 616629. InHills, L. V., Henderson, C. M., and Bamber, E. W.(eds.), Carboniferous and Permian of the World. Canadian Society of Petroleum Geologists, 19.Google Scholar
Wilde, G. L. and Rudine, S. F. 2000. Late Guadalupian biostratigraphy and fusulinid faunas, Altuda Formation, Brewster County, Texas, p. 343371. InWardlaw, B. R., Grant, R. E., and Rohr, D. M.(eds.), The Guadalupian Symposium. Smithsonian Contributions to the Earth Sciences, 32.Google Scholar
Wilde, G. L., Rudine, S. F., and Lambert, L. L. 1999. Formal designation: Reef Trail Member, Bell Canyon Formation, and its significance for recognition of the Guadalupian–Lopingian boundary, p. 6383. InSaller, A. H., Harris, P. M., Kirkland, B. L., and Mazzullo, S. J.(eds.), Geologic framework of the Capitan Reef. SEPM Special Publication, 65.CrossRefGoogle Scholar
Yang, X., Zhou, J., Liu, J., and Shi, G. 1999. Evolutionary pattern of fusulinacean foraminifers in Maokouan, Middle Permian. Science in China (Series D), 42:456464.CrossRefGoogle Scholar
Yang, X., Liu, J., and Shi, G. 2004. Extinction process and patterns of Middle Permian fusulinaceans in southwest China. Lethaia, 37:139147.CrossRefGoogle Scholar
Yang, Z. and Yancey, T. E. 2000. Fusulinid biostratigraphy and paleontology of the Middle Permian (Guadalupian) strata of the Glass Mountains and Del Norte Mountains, west Texas, p. 185259. InWardlaw, B. R., Grant, R. E., and Rohr, D. M.(eds.), The Guadalupian Symposium. Smithsonian Contributions to the Earth Sciences, 32.Google Scholar
Yang, Z., Wu, S., Yin, H., Xu, G., Zhang, K., and Bi, X. 1993. Permo–Triassic event of South China. Geological Publishing House, Beijing, China, 156p.Google Scholar
Zhou, M.-F., Malpas, J., Song, X.-Y., Robinson, P. T., Sun, M., Kennedy, A. K., Lesher, C. M., and Keays, R. R. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Letters, 196:113122.CrossRefGoogle Scholar
36
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *