Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T23:35:50.944Z Has data issue: false hasContentIssue false

Two Asian cricetodontine-like muroid rodents from the Neogene of western North America

Published online by Cambridge University Press:  13 April 2023

Robert A. Martin*
Affiliation:
Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA.
Thomas S. Kelly
Affiliation:
Research Associate, Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, California 90007, USA.
Patricia Holroyd
Affiliation:
University of California Museum of Paleontology, Berkeley, California 94720, USA.
*
*Corresponding author.

Abstract

We appraise the morphology and potential origin of two Neogene cricetodontine-like muroids, Pliotomodon primitivus from Late Miocene sediments in northern California and an undescribed muroid from the late Oligocene or Early Miocene of central Oregon. Superficial resemblance of the dentition of Pliotomodon with members of the North American galushamyinan neotominins is considered a result of parallel evolution, as shown by the large size and unreduced M3/m3 of the former. Dental features of Pliotomodon are similar to those of Eurasian genera such as Byzantinia, Hispanomys, and Ruscinomys, but the unusual morphology of M3/m3, with continuous enamel connections across their lingual surfaces closing the hypoflexus and posteroflexid, respectively, plus retention of only three roots on M1, suggests Pliotomodon arose from an ancestor distinct from the one that gave rise to the large late Neogene hypsodont cricetodontines of the Old World. In the absence of known ancestral taxa in North America, we postulate Pliotomodon dispersed to North America across Beringia during the Hemphillian (ca. 8.6 Ma, Hh-1). Another archaic cricetodontine-like rodent, from the Warm Springs region of the John Day Formation in Oregon, is named as a new species of Deperetomys, D. dingusi new species. Deperetomys dingusi n. sp. likely descended from a species of Deperetomys intermediate between archaic species such as D. calefactus and D. magnus and more dentally derived species such as D. intermedius and D. hagni, dispersing to North America during the late Oligocene or Early Miocene (Arikareean; ca. 23 Ma, Ar3 or Ar4).

UUID: http://zoobank.org/b691db3a-79de-4d3e-8af0-3bda4957b119

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, J., 1986, Nouvelles espèces de cricetids vicariantes dans le Turolein moyen de Fortuna (Prov. Murcia, Espagne): Geobios v. 19, p. 511.CrossRefGoogle Scholar
Agustí, J., Garcés, M., Krijgsman, W., 2006, Evidence for African-Iberian exchanges during the Messinian in the Spanish mammalian record: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 238, p. 514.CrossRefGoogle Scholar
Albright, L.B. III, Woodburne, M.O., Fremd, T.J., Swisher III, C.C., MacFadden, B.J., and Scott, G.R., 2008, Revised chronostratigraphy and biostratigraphy of the John Day Formation (Turtle Cove and Kimberly members), Oregon, with implications for updated calibration of the Arikareean North American Land Mammal age: Journal of Geology, v. 116, p. 211237.CrossRefGoogle Scholar
Alston, E.R., 1876, On the classification of the order Glires: Proceedings of the Zoological Society of London, 1876, p. 6198.CrossRefGoogle Scholar
Barbière, F., Ronez, C., Ortiz, P.E., Martin, R.A., and Pardiñas, U.F.J., 2019, A new nomenclatural system for the study of sigmodontine rodent molars: first step towards an integrative phylogeny of fossil and living cricetids: Biological Journal of the Linnaean Society, v. 127, p. 224244.CrossRefGoogle Scholar
Baskin, J.A., and Korth, W.W.,1996, Copemys mariae (Rodentia, Muridae) a replacement name for Copemys lindsayi Dalquest, Baskin and Schultz, 1996 non Copemys lindsayi Sutton and Korth, 1995: Paludicola, v. 1, p. 32.Google Scholar
Bowdich, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travelers: Paris, J. Smith, 115 p.Google Scholar
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. and Ranzuglia, G., 2008, MeshLab: an Open-Source Mesh Processing Tool, in Scarano, V., De Chiara, R. and Erra, U., eds., Sixth Eurographics Italian Chapter Conference: Geneva, Eurographics Association, p. 129136.Google Scholar
Çinar Durgut, N., and Ünay, E., 2016, Cricetodontini from the Early Miocene of Anatolia: Bulletin of Mineral Research and Exploration, v. 152, p. 85119.Google Scholar
Clark, J.B., Dawson, M.R., and Wood, A.E., 1964, Fossil mammals from the Lower Pliocene of Fish Lake Valley, Nevada: Bulletin of the Museum of Comparative Zoology, v. 131, p. 2763.Google Scholar
Cope, E.D., 1884, Synopsis of the species of Oreodontidae: Paleontological Bulletin, v. 38, p. 503572.Google Scholar
Creely, S., Savage, D.E., and Ogle, B.A., 1982, Stratigraphy of upper Tertiary non-marine rocks of central Contra Costa Basin, California, in Ingersoll, R.V., and Woodburne, M.O., eds., Cenozoic Nonmarine Deposits of California and Arizona: Pacific Section, Field Trip, Society of Economic Paleontologists and Mineralogists, p. 1122.Google Scholar
de Bruijn, H., 1976, Vallesian and Turolian rodents from Biotia, Attica and Rhodes (Greece) 1 and 2: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, v. 97, p. 381405.Google Scholar
de Bruijn, H., 2009, The Eumyarion (Mammalia, Rodentia, Muridae) assemblage from Sandelzhausen (Miocene, Southern Germany): a test on homogeneity: Paläontologische Zeitschrift, v. 83, p. 7783.CrossRefGoogle Scholar
de Bruijn, H., Fahlbusch, V., Saraç, G., and Ünay, E., 1993, Early Miocene rodent faunas from the eastern Mediterranean area. Part III. The genera Deperetomys and Cricetodon with a discussion of the evolutionary history of the Cricetodontini: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, v. 96, p. 151216.Google Scholar
de Bruijn, H., Marković, Z., and Wessels, W. 2013. Late Oligocene rodents from Banovići (Bosnia and Herzegovina): Palaeodiversity, v. 6, p. 63105.Google Scholar
de Bruijn, H., Marković, Z., Wessels, W., and van de Weerd, A., 2019, Pappocricetodontinae (Rodentia, Muridae) from the Paleogene of south-east Serbia: Palaeodiversity and Palaeoenvironments, v. 99, p. 511526.CrossRefGoogle Scholar
Dingus, L., 1978, The Warm Springs fauna (Mammalia, Hemingfordian) from the western facies of the John Day Formation, Oregon [MS thesis]: Riverside, California, University of California, Riverside, 179 p.Google Scholar
Dingus, L., 1990, Systematics, stratigraphy, and chronology for mammalian fossils (late Arikareean to Hemingfordian) from the uppermost John Day Formation, Warm Springs, Oregon: PaleoBios, v. 12, p. 124.Google Scholar
Fahlbusch, V., 1964, Die Cricetiden der oberen Süsswassermolasse Bayerns: A bhandlungen der Bayerischen Akademie der Wissen-schaften. Mathematisch-Naturwissenschaftliche Klasse, Neue Folge, v. 1 18, p. 1136.Google Scholar
Fahlbusch, V., 1966, Cricetidae (Rodentia, Mamm.) aus der mittelmiozänen Spaltenfüllung Erkertshofen bei Eichstätt: Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, v. 6, p. 109131.Google Scholar
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., et al., 2012, 3D Slicer as an image computing platform for the quantitative imaging network: Magnetic Resonance Imaging, v. 30, p. 13231341.CrossRefGoogle ScholarPubMed
Fejfar, O., Heinrich, W.D., Kordos, L., and Maul, L.C., 2011, Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia): Palaeontologia Electronica, 14.3.27A. palaeo-electronica.org/2011_3/6_fejfar/index.html.Google Scholar
Fischer von Waldheim, G., 1817, Adversaria zoological fasciculus primus: Mémoires de La Société Impériale des Naturalistes de Moscou, v. 5, p. 357428.Google Scholar
Freudenthal, M., 1970, A new Ruscinomys (Mammalia, Rodentia) from the late Tertiary (Pikermian) of Samos, Greece: American Museum Novitates, No. 2402, p. 110.Google Scholar
Freudenthal, M., Lacomba, J.I., and Martín Suárez, E., 1991, The Cricetidae (Mammalia, Rodentia) from the Late Miocene of Crevillente (prov. Alicante, Spain): Scripta Geologica v. 96, p. 946.Google Scholar
Frick, C., 1937, Horned ruminants of North America: Bulletin of the American Museum of Natural History, v. 69, p. 1669.Google Scholar
Garland, M., and Heckbert, P.S., 1997, Surface simplification using quadric error metrics: ACM Siggraph Computer Graphics, v. 31, p. 209216.Google Scholar
Goloboff, P.A., and Catalano, S.A., 2016, TNT version 1.5, including a full implementation of phylogenetic morphometrics: Cladistics, v. 32, p. 221238.CrossRefGoogle ScholarPubMed
Goloboff, P.A., Farris, J.S., and Nixon, K.C., 2008, TNT, a free program for phylogenetic analysis: Cladistics, v. 24, p. 774786.CrossRefGoogle Scholar
Hibbard, C.W., 1967, New rodents from the late Cenozoic of Kansas: Papers Michigan Academy Science, Arts and Letters, v. 52, p. 115131.Google Scholar
Hir, J., 2007. Cricetodon klariankae n. sp. (Cricetodontini, Rodentia) from Felsötákány-Felnémet (northern Hungary): Fragmenta Paleontologica Hungarica, v. 24–25, p. 1624.Google Scholar
Hoffmeister, D.F., 1945, Cricetine rodents of the middle Pliocene of the Mulholland fauna: Journal of Mammalogy, v. 26, p. 186191.CrossRefGoogle Scholar
Hooper, E.T., 1972, A synopsis of the rodent genus Scotinomys: Occasional Papers Museum of Zoology, University of Michigan, v. 558, p. 112.Google Scholar
Jacobs, L.L., 1977, Rodents of the Hemphillian Redington local fauna, San Pedro Valley, Arizona: Journal of Paleontology, v. 51, p. 505519.Google Scholar
Jahns, R.H., 1940, Stratigraphy of the easternmost Ventura Basin, California, with a description of a new Lower Miocene mammalian fauna from the Tick Canyon Formation: Carnegie Institution of Washington, Contributions to Paleontology, v. 514, p. 145194.Google Scholar
Jansa, S.A., and Weksler, M., 2004, Phylogeny of muroid rodents: relationships within and between major lineages as determined by IRBP gene sequences: Molecular Phylogenetics and Evolution, v. 31, p. 256276.CrossRefGoogle ScholarPubMed
Keith, M.S., 2015, Phylogenetic relationships, divergence and radiation within the subfamily Neotominae (Rodentia: Cricetidae) [Ph.D. dissertation]: Lubbock, Texas, Texas Tech University, 166 p.Google Scholar
Kelly, T.S., and Martin, R.A., 2022, Phylogenetic positions of Paronychomys Jacobs and Basirepomys Korth and De Blieux relative to the tribe Neotomini (Rodentia, Cricetidae): Journal of Paleontology, v. 96, p. 692705.CrossRefGoogle Scholar
Kelly, T.S., Martin, R.A., and Ronez, C., 2020, New records of cricetid rodents from the medial Clarendonian (Middle Miocene) Esmeralda Formation, Fish Lake Valley, Nevada: Paludicola, v. 13, p. 132.Google Scholar
Kelly, T.S., Martin, R.A., Ronez, C., Canon, C., and Pardiñas, U.F.J., 2022, Morphology and genetics of grasshopper mice revisited in a paleontological framework: reinstatement of Onychomyini: Journal of Mammalogy, gyac093. https://doi.org/10.1093/jmammal/gyac093.Google Scholar
Korth, W.W., 2010, Mammals from the Blue Ash local fauna (late Oligocene), South Dakota. Rodentia part 5: Family Cricetidae: Paludicola, v. 7, p. 117136.Google Scholar
Korth, W.W., 2011, New species of cricetid rodents (Mammalia) from the Late Miocene (Hemphillian) previously referred to Peromyscus pliocaenicus Wilson: Annals Carnegie Museum, v. 79, p. 137147.CrossRefGoogle Scholar
Lander, E.B., and Lindsay, E.H., 2011, Merychyus calaminthus (Mammalia, Artiodactyla, Oreodontidae) of probable early late Arikareean (late Oligocene to late Early Miocene) age from the lower part of the Chalk Canyon Formation, Maricopa and Yavapai counties, Arizona: Journal of Vertebrate Paleontology, v. 31, p. 215226.CrossRefGoogle Scholar
Lartet, E., 1851, Notice sur la Colline de Sansan, suivie d'une récapitulation des diverse espèces d'animaux vertébrés fossils, soit a Sansan, soit dans d'autres gisements du terrain Tertiare Miocène dans le basin sous-Pyrénéen: Auch, France, J.-A. Portes, imprimeur de la préfecture et libraire.Google Scholar
Li, Q., Meng, J., and Wang, Y., 2016, New cricetid rodents from strata near the Eocene-Oligocene boundary in Erden Obo section (Nei Mongol, China. PloS ONE, 11(5):e0156233. https://doi.org/10.1371/journal.pone.0156233.Google ScholarPubMed
Lindsay, E.H., 2008, Cricetidae, in Janis, C.M., Gunnell, G.F., and Uhen, M.D., eds., Evolution of Tertiary Mammals Vol. 2: New York, Cambridge University Press, p. 456479.Google Scholar
Loomis, F.B., 1924, Miocene oreodonts in the American Museum: Bulletin of the American Museum of Natural History, v. 51, p. 137.Google Scholar
López-Antoñanzas, R., and Mein, P., 2011, First detailed descriptions of Hispanomys decedens (Rodentia) from the Middle Miocene of La Grive-Saint Alban (France): Swiss Journal of Geoscience, v. 104, p. 345353.CrossRefGoogle Scholar
López-Antoñanzas, R., and Peláez-Campomanes, P., 2022, Bayesian morphological clock versus parsimony: an insight into the relationships and dispersal events of postvacuum Cricetidae (Rodentia, Mammalia): Systematic Biology, v. 71, p. 512525.CrossRefGoogle ScholarPubMed
López-Antoñanzas, R., Peláez-Campomanes, P., Angeles Álvarez Sierra, M., and García-Paredes, L., 2010, New species of Hispanomys (Rodentia, Cricetodontinae) from the Upper Miocene of Batallones (Madrid, Spain): Zoological Journal of the Linnaean Society, v. 160, p. 725747.CrossRefGoogle Scholar
López-Guerrero, P., 2014, Cricetodontini (Rodentia, Mammalia) del Mioceneo medio y superior del área de Daroca (Aragón, España): sistemática y filogenia [Ph.D. dissertation]: Madrid, Spain, Universidad Complutense de Madrid, 391 p.Google Scholar
López-Guerrero, P., Ángeles Álvarez Sierra, M., García-Paredes, I., and Peláez-Campomanes, P., 2014, New Cricetodontini from the Middle Miocene of Europe: an example of mosaic evolution: Prague, Czech Geological Survey, Bulletin of Geosciences, v. 89, p. 573592.Google Scholar
Maridet, O., and Ni, X., 2013, A new cricetid rodent from the early Oligocene of Yunnan, China, and its evolutionary implications for early Eurasian cricetids: Journal of Vertebrate Paleontology, v. 33, p. 185194.CrossRefGoogle Scholar
Marković, Z., de Bruijn, H., van de Weerd, A.A., and Wessels, W., 2020, Deperetomys (Rodentia, Muridae) from the Oligocene of Bosnia and Herzegovina: Paleobiodiversity and Paleoenvironments, v. 100, p. 821840.CrossRefGoogle Scholar
Marsh, O.C., 1875, Notice of new Tertiary mammals, IV: American Journal of Science, ser. 3, v. 9, p. 234250.Google Scholar
Martin, R.A., 1979, Fossil history of the rodent genus Sigmodon: Evolutionary Monographs No. 2, p. 136.Google Scholar
Martin, R.A., 1996, Tracking mammal body size distributions in the fossil record: a preliminary test of the ‘rule of limiting similarity’: Acta Zoologica Cracoviensia, v. 39, p. 321328.Google Scholar
Martin, R.A., and Zakrzewski, R.J., 2019, On the ancestry of woodrats: Journal of Mammalogy, v. 100, p. 15641582.CrossRefGoogle Scholar
Martin, R.A., Peláez-Campomanes, P., and Mecklin, C., 2012, Patterns of size change in late Neogene pocket gophers from the Meade Basin of Kansas and Oklahoma: Historical Biology, v. 24, p. 537545.CrossRefGoogle Scholar
Martin, R.A., Peláez-Campomanes, P., Ronez, C., Barbière, F., Kelly, T.S., Lindsay, E.H., Baskin, J.A., Czaplewski, N.J., and Pardiñas, U.F.J., 2020, A new genus of cricetid rodent (Rodentia: Cricetidae) from the Clarendonian (Late Miocene) of North America and a consideration of sigmodontine origins: Paludicola, v. 12, p. 298329.Google Scholar
Martin, R.A., Fox, D.L., Urevig, A., Dean, M.R.P., Rountrey, A.N., and Peláez-Campomanes, P., 2021, Fluctuation of body mass in cotton rats and pocket gophers during the late Cenozoic in the Meade Baasin of Kansas: possible influence of the Huckleberry Ridge ash-fall: Historical Biology, v. 34, p. 983994.CrossRefGoogle Scholar
Matthew, W.D., 1907, A Lower Miocene fauna from South Dakota: Bulletin of the American Museum of Natural History, v. 23, p. 169219.Google Scholar
Matthew, W.D., 1924, Third contribution to the Snake Creek Fauna: Bulletin of the American Museum of Natural History, v. 50, p. 59210.Google Scholar
May, S.R., 1981, Repomys (Mammalia: Rodentia gen. nov.) from the late Neogene of California and Nevada: Journal of Vertebrate Paleontology, v. 1, p. 218230.CrossRefGoogle Scholar
McKenna, M.C., and Bell, S.K., 1997, Classification of Mammals Above the Species Level: New York, Columbia University Press, 631 p.Google Scholar
Mein, P., and Freudenthal, M., 1971, Une nouvelle classification des Cricetidae (Mam. Rod.) du Tertiare du Europe: Scripta Geologica, v. 2, p. 137.Google Scholar
Miller, J.R., and Engstrom, M.D., 2008, The relationships of major lineages within peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal: Journal of Mammalogy, v. 89, p. 12791295.CrossRefGoogle Scholar
Osborn, H.F., 1918, Equidae of the Oligocene, Miocene, and Pliocene of North America, iconographic type revision: Memoirs of the American Museum of Natural History, v. 2, p. 1217.Google Scholar
Peters, R.H., 1983, The Ecological Implications of Body Size: Cambridge, Cambridge University Press, 329 p.CrossRefGoogle Scholar
Prieto, J., 2012, Comments on the morphologic and metric variability in the cricetid rodent Depereomys hagni (Fahlbusch, 1964) from the Middle Miocene of South Germany: Zitteliana A, v. 52, p. 7177.Google Scholar
Prieto, J., Rummel, M., Schotz, H., and Mein, P., 2022, A new Middle Miocene lineage based on taxonomic revision of the large and rare cricetid rodent Lartetomys: Palaeobiodiversity and Palaeoenvironments, v. 102, p. 223236.CrossRefGoogle Scholar
Qiu, Z.D., 1996, Middle Miocene Micromammalian Fauna from Tunggur, Nei Mongol: Beijing, Science Press, 216 p.Google Scholar
Qiu, Z.D., 2010, Cricetid rodents from the early Miocene Xiacaowan Formation, Sihong, Jiangsu: Vertebrata PalAsiatica, v. 48, p. 2747.Google Scholar
Qiu, Z.D., and Li, Q., 2016, Neogene rodents from central Nei Mongol, China: Palaontologica Sinica, n. ser. C, v. 30, p. 1684.Google Scholar
Reig, O.A., 1977, A proposed unified nomenclature for the enameled components of the molar teeth of the Cricetidae (Rodentia): Journal of Zoology, v. 181, p. 227241.CrossRefGoogle Scholar
Rensberger, J.M., 1971, Entoptychine pocket gophers (Mammalia, Geomyoidea) of the Early Miocene John Day Formation, Oregon: University of California Publications in Geological Sciences, v. 90, p. 1163.Google Scholar
Retallack, G.J., and Samuels, J.X., 2020, Paleosol-based inference of niches for Oligocene and Early Miocene fossils from the John Day Formation of Oregon: Journal of Vertebrate Paleontology, e1761823. https://doi.org/10.1080/02724634.2019.1761823.CrossRefGoogle Scholar
Rolfe, S., Pieper, S., Porto, A., Diamond, K., Winchester, J., Shan, S., Kirveslahti, H., Boyer, D., Summers, A., and Maga, A.M., 2021, SlicerMorph: an open and extensible platform to retrieve, visualize and analyse 3D morphology: Methods in Ecology and Evolution v. 12, p. 18161825.CrossRefGoogle Scholar
Ronez, C., Martin, R.A., and Pardiñas, U.F.J., 2020, Morphological revision of Copemys loxodon, type species of the Miocene cricetid Copemys (Mammalia, Rodentia): a key to understanding the history of New World cricetids: Journal of Vertebrate Paleontology, v. 40: e1772273. https://doi.org/10.1080/02724634.2020.1772273.CrossRefGoogle Scholar
Savage, D.E., Ogle, B.A., and Creely, S., 1951, Subdivision of vertebrate-bearing non-marine Pliocene rocks in west-central Contra Costa County, California: Geological Society of America Bulletin, v. 62, p. 1511.Google Scholar
Schaub, S., 1925, Die hamsterartigen Nagatiere des Tertiärs und ihre lebenden Verwandten: Abhandelungen Schweizerischen Palaontologische Gesellschaft, v. 45, p. 1114.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., et al., 2012, Fiji: an open-source platform for biological-image analysis: Nature Methods v. 9, p. 676682.CrossRefGoogle ScholarPubMed
Sellards, E.H., 1916, Fossil vertebrates from Florida: a new Miocene fauna; new Pliocene species; the Pleistocene fauna: Florida State Geological Survey, Annual Report, v. 8, p. 79119.Google Scholar
Sen, S., and Erbajeva, M.A., 2011, A new species of Gobicricetodon Qiu, 1996 (Mammalia, Rodentia, Cricetidae) from the Middle Miocene Aya Cave, Lake Baikal: Vertebrata PalAsiatica, v. 49, p. 257274.Google Scholar
Stehlin, H.G., and Schaub, S., 1951, Die Trogonodontie der simplicidentaten Nager: Schweizerische Palaontologische Abhandlungen, v. 67, p. 1385.Google Scholar
Steppan, S.J., and Schenk, J.J., 2017, Muroid rodent phylogenetics; 900-species tree reveals increasing diversification rates: PLoS ONE, 12:e0183070. https://doi.org/10.1371/journal.pone.0183070.CrossRefGoogle ScholarPubMed
Stirton, R.A., 1939, Cenozoic mammal remains from the San Francisco Bay region: University of California Publications, Bulletin of the Department of Geological Sciences, v. 24, p. 339409.Google Scholar
Ünay, E., de Bruijn, H., and Suata-Alpaslan, F., 2006, Rodents from the Upper Miocene hominoid locality Corakyerler (Anatolia): Beiträge zur Paläontologie, v. 30, p. 453467.Google Scholar
Ünay-Bayraktar, E. 1989, Rodents from the Middle Oligocene of Turkish Thrace: Utrecht Micropaleontological Bulletin Special Publication, no. 5, p. 1119.Google Scholar
van Dam, J.A., Furió, M., and van Balen, R.T., 2014, Re-interpreting the biochronology of the La Celia and Los Gargantones mammal sites (Late Miocene, Murcia, Spain): Geobios, v. 47, p. 155164.CrossRefGoogle Scholar
van de Weerd, A., 1976, Rodent faunas of the Mio-Pliocene continental sediments of the Teruel-Alfambra region, Spain: Utrecht Micropaleontological Bulletins, Special Publication 2, p. 1185.Google Scholar
Villalta, J.F. de, and Crusafont Pairó, M., 1956, Un nouveau Ruscinomys du Pontien Espagnol et sa position systématique: Comptes Rendus Société Géologique de France, v. 7, p. 9193.Google Scholar
Wagner, J.R., Deino, A., Edwards, S.W., Sarna-Wojcicki, A.M., and Wan, E., 2021, Miocene stratigraphy and structure of the East Bay Hills, California, in Sullivan, R., Sloan, D., Unruh, J.R., and Schwartz, D.P., eds., Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary: Geological Society of America Memoir 217, p. 331391.CrossRefGoogle Scholar
Wood, H.E., 1964, Rhinoceroses from the Thomas Farm Miocene of Florida: Bulletin of the Museum of Comparative Zoology, v. 130, p. 363386.Google Scholar
Woodburne, M.O., 1969, Systematics, biogeography, and evolution of Cynorca and Dyseohyus (Tayassuidae): Bulletin of the American Museum of Natural History, v. 141, p. 275355.Google Scholar
Wu, W., Meng, J., Jie, Y., Ni, X., Bi, S.-D., and Wei, Y.-P., 2009, The Miocene mammals from Dinshanyanchi formations of North Junggar Basin, Xinjiang: Vertebrata Palasiatica, v. 47, p. 208233.Google Scholar