Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.388 Render date: 2021-12-04T05:56:09.325Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Universal Elemental Homology in Glyptocystitoids, Hemicosmitoids, Coronoids and Blastoids: Steps Toward Echinoderm Phylogenetic Reconstruction in Derived Blastozoa

Published online by Cambridge University Press:  20 May 2016

Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996-1410, USA,
Johnny A. Waters
Affiliation:
Department of Geology, Appalachian State University, Boone, NC 28608, USA,

Abstract

Universal elemental homology (UEH) is used to establish homology of thecal plates and elements of the ambulacral system among clades of stemmed echinoderms by placing these structures into a testable hypothesis of homology. Here UEH is used to explore hypotheses of homology in blastoids, coronoids, Lysocystites, hemicosmitoids, and glyptocystitoids. This new approach to analyze homology is particularly powerful in understanding the nature of the thecal plates of blastoids and how they relate to other taxa in a common nomenclatural lexicon. In blastoids, deltoids are interpreted as oral plates that are homologues to oral plates of glyptocystitoids and hemicosmitoids whereas side plates are interpreted to be ambulacral floor plates. Thecal plates are homologous among blastoids, coronoids and Lysocystites but these morphologies cannot be reconciled with plate circlets of glyptocystitoids and hemicosmitoids. A phylogenetic analysis of these taxa presents the origin of blastoids as sister taxon of coronoids within a testable series of homologies.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.CrossRefGoogle Scholar
Ausich, W. I. 1998 a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998 b. Origin of Crinoidea, p. 127132. InMooi, R. and Telford, M.(eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Baverstock, P. R. and Moritz, C. 1990. Sampling Design, p. 1324. InHillis, D. M. and Moritz, C.(eds.), Molecular Systematics. Sinaur and Associates, Sunderland, Massachusetts.Google Scholar
Beaver, H. H., Fay, R. O., Macurda, D. B. Jr., Moore, R. C., and Wanner, J. 1967. Blastoids, p. S298S255. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 1(1). Geological Society of America and University of Kansas, New York and Lawrence.Google Scholar
Beaver, H. H., Fabian, A. J., and Palatas, M. 2000. Summit structures in Mississippian blastoids. Journal of Paleontology, 74:247253.CrossRefGoogle Scholar
Bell, B. M. 1976 a. A Study of North American Edrioasteroidea. New York State Museum Memoir 21, 446p.Google Scholar
Bell, B. M. 1976 b. Phylogenetic implications of ontogenetic development in the class Edrioasteroidea (Echinodermata). Journal of Paleontology, 50:10011019.Google Scholar
Bockelie, J. F. 1979. Taxonomy, functional morphology and paleoecology of the Ordovician cystoid family Hemicosmitidae. Palaeontology, 22:363406.Google Scholar
Bodenbender, B. E. and Fisher, D. C. 2001. Stratocladistic analysis of blastoid phylogeny. Journal of Paleontology, 75:351369.CrossRefGoogle Scholar
Breimer, A. and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Verhangelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde Eerste Reeks, 26:1390.Google Scholar
Breimer, A. and Ubaghs, G. 1974. A critical comment on the classification of the pelmatozoan echinoderms. I and II: Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings, Series B, 77:408417.Google Scholar
Brett, C. E., Frest, T. J., Sprinkle, J., and Clement, C. R. 1983. Coronoidea: a new class of blastozoan echinoderms based on taxonomic reevaluation of Stephanocrinus. Journal of Paleontology, 57:627651.Google Scholar
Broadhead, T. W. and Sumrall, C. D. 2003. Heterochrony and paedomorphic development of Sprinkleocystis ektopios, new genus and species (Rhombifera, Glyptocystida) from the Middle Ordovician (Carodoc) of Tennessee. Journal of Paleontology, 77:113120.CrossRefGoogle Scholar
Carpenter, P. H. 1884. Report on the Crinoidea—the stalked crinoids. Report on the scientific results of the voyage of the H. M. S. Challenger. Zoology, 11:1440.Google Scholar
David, B. and Mooi, R. 1998. Major events in the evolution of echinoderms viewed by the light of embryology, p. 2128. InMooi, R. and Telford, M.(eds.), Echinoderms, San Francisco. Balkema, Rotterdam.Google Scholar
David, B., Mooi, R., and Telford, M. 1995. The ontogenetic basis of Lovén's Rule clarifies homology of the echinoid peristome, p. 155164. InEmson, R. H., Smith, A. B., and Campbell, A. C.(eds.), Echinoderm Research 4. A. A. Balkema, Rotterdam.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Domingues, P., Jacobson, A. G., and Jefferies, R. P. S. 2002. Paired gill slits in a fossil with a calref skeleton. Nature, 417:841844.CrossRefGoogle Scholar
Donovan, S. K. and Paul, C. R. C. 1985. Coronate echinoderms from the lower Palaeozoic of Britain. Palaeontology, 28:527543.Google Scholar
Fay, R. O. 1978. Order Coronata Jaekel 1918, p. T574T578. InMoore, R. C. and Teichert, C.(eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata. Geological Society of America and University of Kansas, Boulder, and Lawrence.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Science, 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20:20344.CrossRefGoogle Scholar
Gil, Cid, M. D., Domínguez, P., Cruz, M. C., and Escribano, M. 1996. Primera cita de un blastoideo Coronado en el Ordovícico Superior de Sierra Morena Oriental. Revista de la Sociedad Geológica de España, 9:253267.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364:143.Google Scholar
Hillis, D. M. 1994. Homology in molecular biology, p. 339368. InHall, B. K.(ed.), Homology: The Hierarchical Basis of Comparative Biology. Academic Press, San Diego.CrossRefGoogle Scholar
Hotchkiss, F. H. C. 1998. A “rays as appendages” model for the origin of pentamerism in echinoderms. Paleobiology, 24:200214.Google Scholar
Janies, D. 2001. Phylogenetic relationships of extant echinoderm classes. Canadian Journal of Zoology, 79:12321250.CrossRefGoogle Scholar
Kammer, T. W., Sumrall, C. D., Ausich, W. I., and Deline, B. 2011. Recognition of universal elemental homology in crinoids and blastozoans. Geological Society of America, Abstracts with Program, 43:84.Google Scholar
Kesling, R. V. 1968. Cystoids, p. S85267. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology Part S 1(1), Lawrence and New York.Google Scholar
Koch, D. L. and Strimple, H. L. 1968. A new Upper Devonian cystoid attached to a discontinuity surface. Iowa Geological Survey Report of Investigations, 5:149.Google Scholar
Macurda, D. B. Jr., 1983. Systematics of the fissiculate Blastoidea. Museum of Paleontology Papers on Paleontology, 22:1291.Google Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, p. 87–95. InDavid, B., Guille, A., Féral, J., and Roux, M.(eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Mooi, R. and David, B. 1997. Skeletal homologies of echinoderms, p. 305335. InWaters, J. A. and Maples, C. G.(eds.), Geobiology of Echinoderms. Paleontological Society Papers 3.Google Scholar
Mooi, R. and David, B. 1998. Evolution within a bizarre phylum: homologies of the first echinoderms. American Zoologist, 38:965974.CrossRefGoogle Scholar
Mooi, R., David, B., and Wray, G. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development, 7:542555.CrossRefGoogle ScholarPubMed
Mooi, R. and David, B. 2008. Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Annual Review of Ecology, Evolution, and Systematics, 39:4362.CrossRefGoogle Scholar
Moore, R. C. 1954. Status of invertebrate paleontology, 1953 IV Echinodermata: Pelmatozoa. Bulletin of the Museum of Comparative Zoology, 112:125149.Google Scholar
Parsley, R. L. 1970. Revision of the North American Pleurocystitidae (Rhombifera–Cystoidea). Bulletins of American Paleontology, 58:135213.Google Scholar
Parsley, R. L. 1982. Eumorphocystis, p. 280288. InSprinkle, J.(ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Parsley, R. L. 2000. Morphological and paleontological analysis of the Ordovician ankyroid Lagynocystis (Stylophora: Echinodermata). Journal of Paleontology, 74:254262.Google Scholar
Patterson, C. 1988. Homology in classical and molecular biology. Molecular Ecology and Evolution, 5:603625.Google ScholarPubMed
Paul, C. R. C. 1968 a. Macrocystella Callaway, the earliest glyptocystitid cystoid. Palaeontology, 11:580600.Google Scholar
Paul, C. R. C. 1968 b. Morphology and function of dichoporite pore structures in cystoids. Palaeontology, 11:697730.Google Scholar
Paul, C. R. C. 1972. Morphology and function of exothecal pore structures in cystoids. Palaeontology, 15:128.Google Scholar
Paul, C. R. C. 1984. British Ordovician Cystoids, Part 2. Monograph of the Palaeontographical Society, p. 65152.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. InPaul, C. R. C. and Smith, A. B.(eds.), Echinoderm Phylogeny and Evolution. Oxford, Clarendon Press.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Sepkoski, J. J. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sevastopulo, G. D. 2005. The early ontogeny of blastoids. Geological Journal, 40:351362.CrossRefGoogle Scholar
Simms, M. J. 1994. Reinterpretation of thecal plate homology and phylogeny in the class Crinoidea. Lethaia, 26:303312.CrossRefGoogle Scholar
Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1990. Evolutionary diversification of echinoderms during the Early Palaeozoic, p. 256286. InTaylor, P. D. and Larwood, G. P.(eds.), Systematics Association Special Volume 42. Clarendon Press, Oxford.Google Scholar
Smith, E. A. 1906. Development and variation of Pentremites conoideus.Indiana Department of Geology and Natural Resources, Annual Report 30:12191242, pls.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283p.Google Scholar
Sprinkle, J. 1975. The “arms” of Caryocrinites, a rhombiferan cystoid convergent on crinoids. Journal of Paleontology, 49:10621073.Google Scholar
Sprinkle, J. 1980 a. An overview of the fossil record, p. 1526. InBroadhead, T. W. and Waters, J. A.(eds.), Echinoderms, Notes for a Short Course. University of Tennessee, Knoxville.Google Scholar
Sprinkle, J. 1980 b. Origin of blastoids: new look at an old problem. Geological Society of America Abstracts with Program, 12:528.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata, p. 375398. InLipps, J. H. and Signor, P. W. (eds.), Origins and Early Evolution of the Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Sprinkle, J. and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: the role of substrates. PALAIOS, 10:437453.CrossRefGoogle Scholar
Sprinkle, J. and Kolata, D. R. 1982. “Rhomb-bearing” camerate, p. 206211. InSprinkle, J.(ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Sprinkle, J. and Sumrall, C. D. 2008. New parablastoid taxa from North America. The University of Kansas Paleontological Contributions, 16:114.Google Scholar
Sprinkle, J. and Wahlman, G. P. 1994. New echinoderms from the Early Ordovician of west Texas. Journal of Paleontology, 68:324338.CrossRefGoogle Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata, p. 267288. InWaters, J. A. and Maples, C. G.(eds.), Geobiology of Echinoderms. Paleontological Society Papers 3.Google Scholar
Sumrall, C. D. 2008. The origin of Lovén's Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border, p. 228241. InAusich, W. I. and Webster, G. D.(eds.), Echinoderm Paleobiology. University of Indiana Press, Bloomington.Google Scholar
Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, p. 269276. InHarris, L. G., Böttger, S. A., Walker, C. W., and Lesser, M. P.(eds.), Echinoderms: Durham. CRC Press, London.Google Scholar
Sumrall, C. D. and Deline, B. 2009. A new species of the dual-mouthed paracrinoid Bistomiacystis and a redescription of the edrioasteroid Edrioaster priscus from the Middle Ordovician Curdsville Member of the Lexington Limestone. Journal of Paleontology, 83:135139.CrossRefGoogle Scholar
Sumrall, C. D. and Sprinkle, J. 1995. Peristomal bordering plates in fossil echinoderms. Geological Society of America, Abstracts with Programs, 27:A113.Google Scholar
Sumrall, C. D. and Sprinkle, J. 1998. Early ontogeny of the glyptocystitid rhombiferan Lepadocystis moorei, p. 409414. InCarnevali, M. D. C. and Bonasoro, F.(eds.), Echinoderm Research 1998. A. A. Balkema, Rotterdam.Google Scholar
Sumrall, C. D. and Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33:149163.CrossRefGoogle Scholar
Wanner, J. 1924. Die permischen Blastoiden von Timor. Jaarbook van het Mijnwezen in Nederlandsch Oost Indie, 1922. Verhandling, 51:163233.Google Scholar
Waters, J. A. and Horowitz, A. S. 1993. Ordinal level evolution in the Blastoidea. Lethaia, 26:207213.CrossRefGoogle Scholar
Williams, D. M. 1993. A note on molecular homology: multiple patterns from single datasets. Cladistics, 9:233245.CrossRefGoogle Scholar
Zhao, Yu, Sumrall, C. D., Parsley, R. L., and Peng, J. 2010. Kailidiscus, a new plesiomorphic edrioasteroid from the basal middle Cambrian Kaili Biota of Guizhou Province, China. Journal of Paleontology, 84:668680.CrossRefGoogle Scholar
40
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Universal Elemental Homology in Glyptocystitoids, Hemicosmitoids, Coronoids and Blastoids: Steps Toward Echinoderm Phylogenetic Reconstruction in Derived Blastozoa
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Universal Elemental Homology in Glyptocystitoids, Hemicosmitoids, Coronoids and Blastoids: Steps Toward Echinoderm Phylogenetic Reconstruction in Derived Blastozoa
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Universal Elemental Homology in Glyptocystitoids, Hemicosmitoids, Coronoids and Blastoids: Steps Toward Echinoderm Phylogenetic Reconstruction in Derived Blastozoa
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *