Skip to main content Accessibility help

An Ordovician nectocaridid hints at an endocochleate origin of Cephalopoda

  • Martin R. Smith (a1)


Nectocaridids are soft-bodied Cambrian organisms that have been controversially interpreted as primitive cephalopods, at odds with the long-held belief that these mollusks evolved from a shell-bearing ancestor. Here, I document a new nectocaridid from the Whetstone Gulf Formation, extending the group's range into the Late Ordovician. Nectocotis rusmithi n. gen. n. sp. possesses a robust internal element that resembles a non-mineralized phragmocone or gladius. Nectocaridids can be accommodated in the cephalopod total group if the earliest cephalopods (1) inherited a non-mineralized shell field from the ancestral mollusk; and (2) internalized this shell field. This evolutionary scenario would overturn the traditional ectocochleate, Nautilus-like reconstruction of the ancestral cephalopod, and indicate a trend towards increased metabolic efficiency through the course of Cambrian–Ordovician evolution.




Hide All
Bambach, R.K., 1993, Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem: Paleobiology, v. 19, p. 372397.
Bandel, K., 1989, Cephalopod shell structure and general mechanisms of shell formation, in Carter, J.G., ed., Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, v. 5: New York, Van Nostrand Reinhold, p. 97115.
Boutilier, R.G., West, T.G., Pogson, G.H., Mesa, K.A., Wells, J., and Wells, M.J., 1996, Nautilus and the art of metabolic maintenance: Nature, v. 382, p. 534536.
Brayard, A., Krumenacker, L.J., Botting, J.P., Jenks, J.F., Bylund, K.G., Fara, E., Vennin, E., Olivier, N., Goudemand, N., Saucède, T., Charbonnier, S., Romano, C., Doguzhaeva, L., Thuy, B., Hautmann, M., Stephen, D.A., Thomazo, C., and Escarguel, G., 2017, Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna: Science Advances, v. 3, p. e1602159.
Brock, G.A., and Paterson, J.R., 2004, A new species of Tannuella (Helcionellida, Mollusca) from the Early Cambrian of South Australia: Memoirs of the Association of Australasian Palaeontologists, v. 30, p. 133143.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B., 2004, Toward a metabolic theory of ecology: Ecology, v. 85, p. 17711789.
Butterfield, N.J., 2005, Probable Proterozoic fungi: Paleobiology, v. 31, p. 165182.
Butterfield, N.J., Balthasar, U., and Wilson, L.A., 2007, Fossil diagenesis in the Burgess Shale: Palaeontology, v. 50, p. 537543.
Caron, J.-B., Scheltema, A.H., Schander, C., and Rudkin, D., 2006, A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale: Nature, v. 442, p. 159163.
Checa, A.G., Cartwright, J.H.E., Sánchez-Almazo, I., Andrade, J.P., and Ruiz-Raya, F., 2015, The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor: Scientific Reports, v. 5, p. 11513.
Conway Morris, S., 1976, Nectocaris pteryx, a new organism from the Middle Cambrian Burgess Shale of British Columbia: Neues Jahrbuch Für Geologie Und Paläontologie, Monatshefte, v. 12, p. 703713.
De Laet, J.E., 2005, Parsimony and the problem of inapplicables in sequence data, in Albert, V.A., ed., Parsimony, Phylogeny, and Genomics: Oxford, Oxford University Press, p. 81116.
Doguzhaeva, L.A., and Mapes, R.H., 2015, Arm hooks and structural features in the Early Permian Glochinomorpha Gordon 1971, indicative of its coleoid affiliation: Lethaia, v. 48, p. 100114.
Doguzhaeva, L.A., and Mutvei, H., 2015, The additional external shell layers indicative of “endocochleate experiments” in some ammonoids, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Topics in Geobiology 43: Ammonoid Paleobiology: from Anatomy to Ecology: Dordrecht, Springer, p. 585609.
Doguzhaeva, L.A., Summesberger, H., Mutvei, H., and Brandstaetter, F., 2007, The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps: Palaeoworld, v. 16, p. 272284.
Farrell, Ú.C., Martin, M.J., Hagadorn, J.W., Whiteley, T., and Briggs, D.E.G., 2009, Beyond Beecher's Trilobite Bed: widespread pyritization of soft tissues in the Late Ordovician Taconic foreland basin: Geology, v. 37, p. 907910.
Fretter, V., and Graham, A., 1978, The prosobranch molluscs of Britain and Denmark part 45—marine Rissoacea: Journal of Molluscan Studies, v. S6, p. 154241.
Gabbott, S.E., 1999, Orthoconic cephalopods and associated fauna from the late Ordovician Soom Shale Lagerstätte, South Africa: Palaeontology, v. 42, p. 123148.
Hennig, W., 1953, Kritische Bemerkungen zum phylogenetischen System der Insekten: Beiträge Zur Entomologie, v. 6, p. 185.
Hohagen, J., and Jackson, D.J., 2013, An ancient process in a modern mollusc: early development of the shell in Lymnaea stagnalis: BMC Developmental Biology, v. 13, p. 27.
Holland, C.H., 1987, The nautiloid cephalopods: a strange success: Journal of the Geological Society, v. 144, p. 114.
House, M.R., 1985, The ammonoid time-scale and ammonoid evolution: Geological Society, London, Memoirs, v. 10, p. 273283.
Kear, A.J., Briggs, D.E.G., and Donovan, D.T., 1995, Decay and fossilization of non-mineralized tissue in coleoid cephalopods: Palaeontology, v. 38, p. 105132.
Klug, C., and Lehmann, J., 2015, Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Topics in Geobiology 43: Ammonoid Paleobiology: from Anatomy to Ecology: Dordrecht, Springer, p. 507529.
Klug, C., Kröger, B., Vinther, J., and Fuchs, D., 2015, Ancestry, origin and early evolution of ammonoids, in Klug, C., Korn, D., De Baets, K., Kruta, I., and Mapes, R.H., eds., Topics in Geobiology 44: Ammonoid Paleobiology: from Macroevolution to Paleogeography: Dordrecht, Springer, p. 324.
Kniprath, E., 1981, Ontogeny of the molluscan shell field: a review: Zoologica Scripta, v. 10, p. 6179.
Kröger, B., 2013, Cambrian–Ordovician cephalopod palaeogeography and diversity: Geological Society, London, Memoirs, v. 38, p. 429448.
Kröger, B., Servais, T., and Zhang, Y.-B., 2009, The origin and initial rise of pelagic cephalopods in the Ordovician: PLoS ONE, v. 4, p. e7262.
Kröger, B., Vinther, J., and Fuchs, D., 2011, Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: BioEssays, v. 33, p. 602613.
Maeda, H., and Seilacher, A., 1996, Ammonoid taphonomy, in Landman, N.H., Tanabe, K., and Davis, R., eds., Ammonoid Paleobiology: New York, Plenum Press, p. 543578.
Mazurek, D., and Zatoń, M., 2011, Is Nectocaris pteryx a cephalopod?: Lethaia, v. 44, p. 24.
Mooi, R.D., and Gill, A.C., 2016, Hennig's auxiliary principle and reciprocal illumination revisited, in Williams, D. Schmitt, M., and Wheeler, Q., eds., The Future of Phylogenetic Systematics: Cambridge, Cambridge University Press, p. 258285.
Mutvei, H., and Mapes, R.H., 2018, Carboniferous coleoids with mixed coleoid-orthocerid characteristics: a new light on cephalopod evolution: GFF, v. 140, p. 1124.
O'Dor, R.K., and Webber, D.M., 1991, Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution: Journal of Experimental Biology, v. 160, p. 93112.
O'Dor, R.K., Forsythe, J., Webber, D.M., Wells, J., and Wells, M.J., 1993, Activity levels of Nautilus in the wild: Nature, v. 362, p. 626628.
Runnegar, B.N., 2011, Once again: is Nectocaris pteryx a stem-group cephalopod?: Lethaia, v. 44, p. 373.
Runnegar, B.N., and Pojeta, J., 1992, The earliest bivalves and their Ordovician descendants: American Malacological Bulletin, v. 9, p. 117122.
Skovsted, C.B., Betts, M.J., Topper, T.P., and Brock, G.A., 2015, The early Cambrian tommotiid genus Dailyatia from South Australia: Memoirs of the Association of Australasian Palaeontologists, v. 48, p. 1117.
Skovsted, C.B., Pan, B., Topper, T.P., Betts, M.J., Li, G., and Brock, G.A., 2016, The operculum and mode of life of the lower Cambrian hyolith Cupitheca from South Australia and North China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 443, p. 123130.
Smith, M.R., 2013, Nectocaridid ecology, diversity and affinity: early origin of a cephalopod-like body plan: Paleobiology, v. 39, p. 297321.
Smith, M.R., 2019, High resolution images of Nectocotis rusmithi: FigShare, doi:10.6084/m9.figshare.c.3953191.
Smith, M.R., and Caron, J.-B., 2010, Primitive soft-bodied cephalopods from the Cambrian: Nature, v. 465, p. 469472.
Smith, M.R., and Caron, J.-B., 2011, Nectocaris and early cephalopod evolution: reply to Mazurek & Zatoń: Lethaia, v. 44, p. 369372.
Sun, H.-J., Smith, M.R., Zeng, H., Zhao, F.-C., Li, G.-X., and Zhu, M.-Y., 2018, Hyoliths with pedicles illuminate the origin of the brachiopod body plan: Proceedings of the Royal Society B, v. 285, p. 20181780.
Sutton, M.D., Perales-Raya, C., and Gilbert, I., 2016, A phylogeny of fossil and living neocoleoid cephalopods: Cladistics, v. 32, p. 297307.
Teichert, C., 1986, Times of crisis in the evolution of the Cephalopoda: Paläontologische Zeitschrift, v. 60, p. 227243.
Turek, V., and Manda, Š., 2012, “An endocochleate experiment” in the Silurian straight-shelled cephalopod Sphooceras: Bulletin of Geosciences, v. 87, p. 767813.
Webers, G.F., and Yochelson, E.L., 1989, Late Cambrian molluscan faunas and the origin of the Cephalopoda: Geological Society, London, Special Publications, v. 47, p. 2942.
Weedon, M.J., 1990, Shell structure and affinity of vermiform ‘gastropods’: Lethaia, v. 23, p. 297309.
Yancey, T.E., Garvie, C.L., and Wicksten, M., 2010, The middle Eocene Belosaepia ungula (Cephalopoda: Coleoida) from Texas: structure, ontogeny and function: Journal of Paleontology, v. 84, p. 267287.
Yochelson, E.L., Flower, R.H., and Webers, G.F., 1973, The bearing of new Late Cambrian monoplacophoran genus Knightoconus upon the origin of Cephalopoda: Lethaia, v. 6, p. 275309.
Zhang, Z.-F., Smith, M.R., and Shu, D.-G., 2015, New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles: Scientific Reports, v. 5, p. 14810.

An Ordovician nectocaridid hints at an endocochleate origin of Cephalopoda

  • Martin R. Smith (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed