Skip to main content
    • Aa
    • Aa

Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)

  • David F. Wright (a1)

Knowledge of phylogenetic relationships among species is fundamental to understanding basic patterns in evolution and underpins nearly all research programs in biology and paleontology. However, most methods of phylogenetic inference typically used by paleontologists do not accommodate the idiosyncrasies of fossil data and therefore do not take full advantage of the information provided by the fossil record. The advent of Bayesian ‘tip-dating’ approaches to phylogeny estimation is especially promising for paleosystematists because time-stamped comparative data can be combined with probabilistic models tailored to accommodate the study of fossil taxa. Under a Bayesian framework, the recently developed fossilized birth–death (FBD) process provides a more realistic tree prior model for paleontological data that accounts for macroevolutionary dynamics, preservation, and sampling when inferring phylogenetic trees containing fossils. In addition, the FBD tree prior allows for the possibility of sampling ancestral morphotaxa. Although paleontologists are increasingly embracing probabilistic phylogenetic methods, these recent developments have not previously been applied to the deep-time invertebrate fossil record. Here, I examine phylogenetic relationships among Ordovician through Devonian crinoids using a Bayesian tip-dating approach. Results support several clades recognized in previous analyses sampling only Ordovician taxa, but also reveal instances where phylogenetic affinities are more complex and extensive revisions are necessary, particularly among the Cladida. The name Porocrinoidea is proposed for a well-supported clade of Ordovician ‘cyathocrine’ cladids and hybocrinids. The Eucladida is proposed as a clade name for the sister group of the Flexibilia herein comprised of cladids variously considered ‘cyathocrines,’ ‘dendrocrines,’ and/or ‘poteriocrines’ by other authors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata)
      Available formats
Hide All
AngelinN.P., 1878, Iconographia Crinoideorum. in Stratis Sueciae Siluricis fossilium: Holmiae, Samson and Wallin, 62 p.
AlroyJ., 2010, Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification: Palaeontology, v. 53, p. 12111235.
AusichW.I., 1998, Phylogeny of Arenig to Caradoc Crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea: The University of Kansas Paleontological Contributions Papers, New Series, v. no. 9, 36 p.
AusichW.I., and KammerT.W., 2001, The study of crinoids during the 20th century and the challenges of the 21st century: Journal of Paleontology, v. 75, p. 11611173.
AusichW.I., KammerT.W., and BaumillerT.K., 1994, Demise of the middle Paleozoic crinoid fauna: A single extinction event or rapid faunal turnover?: Paleobiology, v. 20, p. 345361.
AusichW.I., KammerT.W., RhenbergE.C., and WrightD.F., 2015, Early phylogeny of crinoids within the Pelmatozoan clade: Palaeontology, v. 58, p. 937952.
BapstD.W., 2012, When can clades be potentially resolved with morphology?: PLoS One, v. 8, e62312 doi: 10.1371/journal.pone.0062312.
BapstD.W., 2013, A stochastic rate‐calibrated method for time‐scaling phylogenies of fossil taxa: Methods in Ecology and Evolution, v. 4, p. 724733.
BapstD.W., and HopkinsM.J., in press, Comparing cal3 and other a posteriori time-scaling approaches in a case study with the Pterocephaliid trilobites: Paleobiology.
BapstD.W., WrightA.M., MatzkeN.J., and LloydG.T., 2016, Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria): Biology Letters, v. 12, 20160237, doi: 10.1098/rsbl.2016.0237.
BatherF.A., 1890, British fossil crinoids. I. Historical introduction: Annals and Magazine of Natural History, ser. 6, v. 5, p. 306310.
BatherF.A., 1899, A phylogenetic classification of the Pelmatozoa: British Association for the Advancement of Science, v. 1898, p. 916923.
BatherF.A., 1900, Part III The Echinoderma. The Pelmatozoa, in Lankester, E.R., ed., A Treatise on Zoology: London, Adam and Charles Black, p. 94204.
BellM.A., and LloydG.T., 2015, strap: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence: Palaeontology, v. 58, p. 379389.
BergstenJ., NilssonA.N., and RonquistF., 2013, Bayesian tests of topology hypotheses with an example from diving beetles: Systematic Biology, v. 62, p. 660673.
BillingsE., 1857, New species of fossils from Silurian rocks of Canada. Canada Geological Survey, Report of Progress 1853–1856: Report for the year, v. 1856, p. 247345.
BillingsW.R., 1887, A new genus and three new species of crinoids from the Trenton Formation with notes on a large specimen of Dendrocrinus proboscidiatus : The Ottawa Naturalist (Ottawa Field Naturalists’ Club Transactions), v. 111, p. 4954.
BokmaF., 2008, Detection of “punctuated equilibrium” by Bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny: Evolution, v. 62, p. 27182726.
BrowerJ.C., 1995, Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota: Journal of Paleontology, v. 69, p. 939960.
BrusatteS.L., 2010, Representing supraspecific taxa in higher‐level phylogenetic analyses: Guidelines for palaeontologists: Palaeontology, v. 53, p. 19.
BrusatteS.L., BentonM.J., RutaM., and LloydG.T., 2008, Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs: Science, v. 321, p. 14851488.
CarlsonS.J., and FitzgeraldP.C., 2007, Sampling taxa, estimating phylogeny and inferring macroevolution: An example from Devonian terebratulide brachiopods: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 98, p. 311325.
ClarkeJ.A., and MiddletonK.M., 2008, Mosaicism, modules, and the evolution of birds: Results from a Bayesian approach to the study of morphological evolution using discrete character data: Systematic Biology, v. 57, p. 185201.
ColeS.R., 2017, Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata): Journal of Paleontology, doi:10.1017/jpa.2016.137.
ConradT.A., 1842, Descriptions of new species of organic remains belonging to the Silurian, Devonian and Carboniferous Systems of the United States: Philadelphia Journal of the Academy Natural Sciences of Philadelphia, ser. 1, v. 8, no. 2, p. 228280.
CloseR.A., FriedmanM., LloydG.T., and BensonR.B., 2015, Evidence for a mid-Jurassic adaptive radiation in mammals: Current Biology, v. 25, p. 21372142.
DelineB., and AusichW.I., 2011, Testing the plateau: A reexamination of disparity and morphologic constraints in early Paleozoic crinoids: Paleobiology, v. 37, p. 214236.
DidierG., Royer-CarenziM., and LaurinM., 2012, The reconstructed evolutionary process with the fossil record: Journal of Theoretical Biology, v. 315, p. 2637.
DonoghueP.C.J., and BentonM.J., 2007, Rocks and clocks: Calibrating the Tree of Life using fossils and molecules: Trends in Ecology and Evolution, v. 22, p. 424431.
dos ReisM., DonoghueP.C., and YangZ., 2016, Bayesian molecular clock dating of species divergences in the genomics era: Nature Reviews Genetics, v. 17, p. 7180.
DrummondA.J., and RambautA., 2007, BEAST: Bayesian evolutionary analysis by sampling trees: BMC Evolutionary Biology, v. 7, doi: 10.1186/1471-2148-7-214.
DrummondA. J., and StadlerT., 2016, Bayesian phylogenetic estimation of fossil ages: arXiv, preprint, 1601.07447v1.
EldredgeN., and GouldS.J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in Schopf, T.J.M., ed., Models in Paleobiology: San Francisco, Freeman, Cooper and Company, p. 82115.
FellerW., 1968, An Introduction to Probability Theory and its Applications, 1 (third edition): New York, Wiley, 509 p.
FelsensteinJ., 1985, Phylogenies and the comparative method: American Naturalist, v. 126, p. 115.
FelsensteinJ., 2004, Inferring phylogenies, volume 2: Sunderland, Sinauer Associates, 664 p.
FooteM., 1994, Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space: Paleobiology, v. 20, p. 320344.
FooteM., 1996, On the probability of ancestors in the fossil record: Paleobiology, v. 22, p. 141151.
FooteM., 1997, Estimating taxonomic durations and preservation probability: Paleobiology, v. 23, p. 278300.
FooteM., 2000, Origination and extinction components of taxonomic diversity: General problems: Paleobiology, v. 26, p. 74102.
FooteM., and RaupD.M., 1996, Fossil preservation and the stratigraphic ranges of taxa: Paleobiology, v. 22, p. 121140.
FrestT.J., and StrimpleH.L., 1978, Manicrinus (Nov.), a cladid evolutionary homeomorph of the bottom dwelling Hybocrinus, Brownsport (Silurian. Ludlow) of Tennessee: Southeastern Geology, v. 19, p. 157175.
GahnF.J., and KammerT.W., 2002, The cladid crinoid Barycrinus from the Burlington Limestone (early Osagean) and the phylogenetics of Mississippian botryocrinids: Journal of Paleontology, v. 76, p. 123133.
GavryshkinaA., WelchD., StadlerT., and DrummondA. J., 2014, Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration: PLoS Computational Biology, v. 10, e1003919.
GavryshkinaA., HeathT.A., KsepkaD.T., StadlerT., WelchD., and DrummondA.J., 2015, Bayesian total evidence dating reveals the recent crown radiation of penguins: arXiv, preprint, v. 1506, 04797.
GelmanA., and RubinD.B., 1992, Inference from iterative simulation using multiple sequences: Statistical Science, v. 7, p. 457472.
Gil CidM.D., AlonsoP.D, and PobesE.S., 1996, Reconstrucción y modo de videa de Heviacrinus melendezi nov. gen. nov. sp. (Disparida, Iocrinidae), primer crinoide descrito del Ordovícico medio de los Montes de Toledo (España): Revista de la Sociedad Geológica España, v. 9, no. 1–2, p. 1927.
GoldfussG.A., 1826–1844, Petrefacta Germaniae, tam ea, Quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanea, serventur, quam alia quaecunque in Museis Hoeninghusiano Muensteriano aliisque, extant, iconibus et descriiptionns illustrata. — Abbildungen und Beschreibungen der Petrefacten Deutschlands und der Angränzende Länder, unter Mitwirkung des Hern Grafen Georg zu Münster, herausgegeben von August Goldfuss. v. 1 (1826–1833), Divisio prima. Zoophytorum reliquiae, p. 1–114; Divisio secunda. Radiariorum reliquiae, p. 115–221 [Echinodermata]; Divisio tertia. Annulatorium reliquiae, p. 222–242; v. 2 (1834–1840), Divisio quarta. Molluscorum acephalicorum reliquiae. I. Bivalvia, p. 65–286; II. Brachiopoda, p. 287–303; III. (1841–1844), Divisio quinta. Molluscorum gasteropodum reliquiae, p. 1–121: Düsseldorf, Arnz & Co.
GoldringW., 1923, The Devonian crinoids of the state of New York: New York State Museum, Memoir, v. 16, p. 1670.
GorscakE., and O’ConnorP.M., 2016, Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history: Biology Letters, v. 12, 20151047.
GuensburgT.E., 2010, Alphacrinus new genus and origin of the disparid clade: Journal of Paleontology, v. 84, p. 12091216.
GuensburgT.E., 2012, Phylogenetic implications of the oldest crinoids: Journal of Paleontology, v. 86, p. 455461.
GuensburgT.E., and SprinkleJ., 2003, The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system: Bulletins of American Paleontology, v. 364, 43 p.
GuensburgT.E., and SprinkleJ., 2009, Solving the mystery of crinoid ancestry: New fossil evidence of arm origin and development: Journal of Paleontology, v. 83, p. 350364.
GuillermeT., and CooperN., 2016, Effects of missing data on topological inference using a total evidence approach: Molecular Phylogenetics and Evolution, v. 94, p. 146158.
HallJ., 1852, Palaeontology of New York, Volume 2, Containing Descriptions of the Organic Remains of the Lower Middle Division of the New-York System. Natural History of New York, Part 6: New York, D. Appleton & Co. and Wiley & Putnam; Boston, Gould, Kendall, & Lincoln, 362 p.
HarmonL.J., LososJ.B., DaviesT.J., GillespieR.G., GittlemanJ.L., et al. 2010, Early bursts of body size and shape evolution are rare in comparative data: Evolution, v. 64, p. 23852396.
HarrisonL.B., and LarssonH.C.E., 2015, Among-character rate variation distributions in phylogenetic analysis of discrete morphologic characters: Systematic Biology, v. 64, p. 307324.
HeathT.A., and MooreB.R., 2014, Bayesian inference of species divergence times, in Chen, M-H., Kuo, L., and Lewis, P.O., eds., Bayesian Phylogenetics: Methods, Algorithms, and Applications: CRC Press, Oxfordshire, p. 277318.
HeathT.A., HedtkeS.M., and HillisD.M., 2008, Taxon sampling and the accuracy of phylogenetic analyses: Journal of Systematics and Evolution, v. 46, p. 239257.
HeathT.A., HuelsenbeckJ.P., and StadlerT., 2014, The fossilized birth–death process for coherent calibration of divergence-time estimates: Proceedings of the National Academy of Sciences, v. 111, p. E2957E2966.
HeledJ., and BouckaertR.R., 2013, Looking for trees in the forest: Summary tree from posterior samples: BMC Evolutionary Biology, v. 13, p. 221.
HemeryL.G., RouxM., AmezianeN., and EleaumeM., 2013, High-resolution crinoid phyletic inter-relationships derived from molecular data: Cahiers De Biologie Marine, v. 54, p. 511523.
HopkinsM.J., and SmithA.B., 2015, Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution: Proceedings of the National Academy of Sciences, v. 112, p. 37583763.
HuelsenbeckJ.P., LargetB., MillerR.E., and RonquistF., 2002, Potential applications and pitfalls of Bayesian inference of phylogeny: Systematic Biology, v. 51, p. 673688.
HuelsenbeckJ.P., RonquistF., and TeslenkoM., 2015, Command Reference for MrBayes ver. 3.2.5: (accessed June 2016).
HuntG., 2008, Gradual or pulsed evolution: When should punctuational explanations be preferred?: Paleobiology, v. 34, p. 360377.
HuntG., and CarranoM.T, 2010, Models and methods for analyzing phenotypic evolution in lineages and clades, in Alroy, J., and Hunt, G., eds., Short Course on Quantitative Methods in Paleobiology: New Haven, Connecticut, Paleontological Society, p. 245269.
HuntG., and SlaterG., 2016, Integrating paleontological and phylogenetic approaches to macroevolution: Annual Review of Ecology, Evolution, and Systematics, v. 47, p. 189213.
HuntG., BellM.A., and TravisM.P., 2008, Evolution toward a new adaptive optimum: Phenotypic evolution in a fossil stickleback lineage: Evolution, v. 62, p. 700710.
JablonskiD., 2008, Biotic interactions and macroevolution: Extensions and mismatches across scales and levels: Evolution, v. 62, p. 715739.
JaekelO., 1902, Über verschiedene Wege phylogenetischer Entwicklung: 5th Verhandlungen der International Zoological-Congress Berlin, v. 1901, p. 10581117.
JaekelO., 1906, Der oberste Lenneschiefer zwischen Letmathe und Iserlohn, in Schmidt, W.E., Zeitschrift der Deutschen Geologischen Geselleschaft, v. 57, p. 544.
KammerT.W., 2001, Phenotypic bradytely in the Costalocrinus-Barycrinus lineage of Paleozoic cladid crinoids: Journal of Paleontology, v. 75, p. 383389.
KammerT.W., and AusichW.I., 1992, Advanced cladid crinoids from the middle Mississippian of the east-central United States: Primitive-grade calyces: Journal of Paleontology, v. 66, p. 461480.
KammerT.W., and AusichW.I., 1996, Primitive cladid crinoids from upper Osagean-lower Meramecian (Mississippian) rocks of east-central United States: Journal of Paleontology, v. 70, p. 835866.
KassR.E., and RafteryA.E., 1995, Bayes factors: Journal of the American Statistical Association, v. 90, p. 773795.
KierP.M., 1952, Echinoderms of the Middle Devonian Silica Formation of Ohio: University of Michigan Contributions from Museum of Paleontology, v. 10, p. 5981.
KoenigJ.W., and MeyerD.L., 1965, Two new crinoids from the Devonian of New York: Journal of Paleontology, v. 39, p. 391397.
KsepkaD.T., ParhamJ.F., AllmanJ.F., BentonM.J., CarranoM.T., CranstonK.A., DonoghueP.C., HeadJ.J., HermsenE.J., IrmisR.B., and JoyceW.G., 2015, The Fossil Calibration Database—A new resource for divergence dating: Systematic Biology, v. 64, p. 853859.
LaknerC., van der MarkP., HuelsenbeckJ.P., LargetB., and RonquistF., 2008, Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics: Systematic Biology, v. 57, p. 86106.
LaneN.G., 1970, Lower and Middle Ordovician crinoids from west-central Utah: Brigham Young University Geology Studies, v. 17, p. 317.
LeeM.S.Y., and PalciA., 2015, Morphological phylogenetics in the genomic age: Current Biology, v. 25, p. R922R929.
LeeM.S., CauA., NaishD., and DykeG.J., 2014, Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves: Systematic Biology, v. 63, p. 442449.
LepageT., BryantD., PhilippeH., and LartillotN., 2007, A general comparison of relaxed molecular clock models: Molecular Biology and Evolution, v. 24, p. 26692680.
LewisP.O., 2001, A likelihood approach to estimating phylogeny from discrete morphological character data: Systematic Biology, v. 50, p. 913925.
LloydG.T., WangS.C., and BrusatteS.L., 2012, Identifying heterogeneity in rates of morphological evolution: Discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi): Evolution, v. 66, p. 330348.
MaddisonD.R., 1991, The discovery and importance of multiple islands of most-parsimonious trees: Systematic Zoology, v. 40, p. 315328.
MatzkeN.J., 2015, The evolution of antievolution policies after Kitzmiller v. Dover: Science, v. 351, p. 2830, doi: 10.1126/science.aad4057.
MatzkeN.J., and WrightA., 2016, Ground truthing tip-dating methods using fossil Canidae reveals major differences in performance: Biology Letters, v. 12, 2010328, doi: 10.1098/rsbl.2016.0328.
McIntoshG.C., 1986, Phylogeny of the dicyclic inadunate order Cladida: Fourth North American Paleontological Convention Abstracts: University of Colorado, Boulder, p. A31.
McIntoshG.C., 2001, Devonian cladid crinoids: Families Glossocrinidae Goldring, 1923, and Rutkowskicrinidae new family: Journal of Paleontology, v. 75, p. 783807.
MeekF.B., 1871, On some new Silurian (Ordovician) crinoids and shells: American Journal of Science, ser. 3, v. 1, p. 295299.
MeekF.B., and WorthenA.H., 1865, Descriptions of new species of crinoidea, etc. from the Paleozoic rocks of Illinois and some of the adjoining states: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 17, p. 143155.
MillerS.A., and GurleyW.F.E., 1895, New and interesting species of Palaeozoic fossils: Illinois State Museum, Bulletin, v. 7, 89 p.
MooreR.C., and LaudonL.R., 1943, Evolution and classification of Paleozoic crinoids: Geological Society of America Special Paper, v. no. 46, 151 p.
MooreR.C., and TeichertC., eds., 1978, Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Lawrence, Kansas, Geological Society of America and University of Kansas Press, 1027 p.
MüllerJ., 1859, Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin: Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1858), p. 185198.
O’MearaB.C., AnéC., SandersonM.J., WainwrightP.C., and HansenT., 2006, Testing for different rates of continuous trait evolution using likelihood: Evolution, v. 60, p. 922933.
O’ReillyJ.E., PuttickM.N., ParryL., TannerA.R., TarverJ.E., FlemingJ., PisaniD., and DonoghueP.C.J., 2016, Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data: Biology Letters, v. 12, 20160081,
ParadisE., ClaudeJ., and StrimmerK., 2004, APE: Analyses of phylogenetics and evolution in R language: Bioinformatics, v. 20, p. 289290.
PennellM.W., HarmonL.J., and UyedaJ.C., 2014, Is there room for punctuated equilibrium in macroevolution?: Trends in Ecology and Evolution, v. 29, p. 2332.
PhillipsJ., 1839, Encrinites and zoophytes of the Silurian System, in Murchison, R.T., ed., The Silurian System, p. 670675.
PollittJ.R., ForteyR.A., and WillsM.A., 2005, Systematics of the trilobite families Lichidae Hawle and Corda, 1847 and Lichakephalidae Tripp, 1957: The application of Bayesian inference to morphological data: Journal of Systematic Palaeontology, v. 3, p. 225241.
PyronR.A., 2011, Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia: Systematic Biology, v. 60, p. 466481.
PyronR.A., 2015, Post-molecular systematics and the future of phylogenetics: Trends in Ecology and Evolution, v. 30, p. 384389.
RaboskyD.L., 2009, Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions: Ecology Letters, v. 12, p. 735743.
RaboskyD.L., and McCuneA.R., 2009, Reinventing species selection with molecular phylogenies: Trends in Ecology and Evolution, v. 25, p. 6874.
RambautA., 2014, Summarizing posterior trees: (accessed June 2016).
RambautA., and DrummondA.J., 2015, TreeAnnotator v2 2.1: MCMC ouput analysis,
RannalaB., and YangZ., 1996, Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference: Journal of Molecular Evolution, v. 43, p. 304311.
RaupD.M., 1985, Mathematical models of cladogenesis: Paleobiology, v. 11, p. 4252.
RaupD.M., GouldS.J., SchopfT.J.M., and SimberloffD.S., 1973, Stochastic models of phylogeny and the evolution of diversity: Journal of Geology, v. 81, p. 525542.
RobinsonD.F., and FouldsL.R., 1981, Comparison of phylogenetic trees: Mathematical Biosciences, v. 53, p. 131147.
RonquistF., KlopfsteinS., VilhelmsenL., SchulmeisterS., MurrayD.L., and RasnitsynA.P., 2012, A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera: Systematic Biology, v. 61, p. 973999.
RouseG.W., JermiinL.S., WilsonN.G., EeckhautI., LanterbecqD., OjiT., YoungC.M., BrowningT., CisternasP., HelgenL.E., StuckeyM., and MessingC.G., 2013, Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin: Molecular Phylogenetics and Evolution, v. 66, p. 161181.
SalterJ.W., 1873, A Catalogue of the Collection of Cambrian and Silurian Fossils Contained in the Geological Museum of the University of Cambridge: Cambridge, Cambridge University Press, 204 p.
SchlotheimE.F. von, 1820, Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier-und Pflanzenreichs der Vorwelt erläutert: Gotha, Beckersche Buchhandlung, 437 p.
SchultzeL., 1867, Monographie der Echinodermen des Eifler Kalkes: Denkschriften der Kaiserlich Akademie der Wissenschaften Mathematisch-Naturwissenschaftlichen Classe, Wien, v. 26, no. 2, p. 113230.
SepkoskiJ.J.Jr., 1981, A factor analytic description of the Phanerozoic marine fossil record: Paleobiology, v. 7, p. 3653.
SevastopuloG.D., and LaneN.G., 1988, Ontogeny and phylogeny of disparid crinoids, in Paul, C.R.C., and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology: Oxford, Clarendon Press, p. 245253.
SimmsM.J., 1988, The phylogeny of post-Palaeozoic crinoids, in Burke, R.D., Mladenov, P.V., Lambert, P., and Parsley, R.L., eds., Echinoderm Biology: Rotterdam, Balkema, p. 97102.
SimmsM.J., and SevastopuloG.D., 1993, The origin of articulate crinoids: Palaeontology, v. 36, p. 91109.
SimpsonG.G., 1944, Tempo and Mode in Evolution: Columbia University Press, New York, 237 p.
SlaterG.J., 2013, Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary: Methods in Ecology and Evolution, v. 4, p. 734744.
SlaterG.J., 2015, Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution: Proceedings of the National Academy of Sciences, v. 112, p. 48974902.
SlaterG.J., and HarmonL.J., 2013, Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution: Methods in Ecology and Evolution, v. 4, p. 699702.
SmithA.B., 1984, Classification of the Echinodermata: Palaeontology, v. 27, p. 431459.
SmithA.B., 1994, Systematics and the Fossil Record: Documenting Evolutionary Patterns: Oxford, Blackwell Science, 223 p.
SmithA.B., LafayB., and ChristenR., 1992, Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids: Philosophical Transactions: Biological Sciences, v. 338, p. 365382.
SnivelyE., RussellA.P., and PowellG.L., 2004, Evolutionary morphology of the coelurosaurian arctometatarsus: Descriptive, morphometric and phylogenetic approaches: Zoological Journal of the Linnean Society, v. 142, p. 525553.
SpencerM.R., and WilbergE.W., 2013, Efficacy or convenience? Model‐based approaches to phylogeny estimation using morphological data: Cladistics, v. 29, p. 663671.
SpringerF., 1911, On a Trenton echinoderm fauna: Canada Department Mines Memoir no. 15-P, 70 p.
SpringerF., 1920, The Crinoidea Flexibilia: Smithsonian Institution Publication no. 2501, 486 p.
SprinkleJ., 1982, Hybocrinus, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: The University of Kansas Paleontological Contributions, Monograph, v. 1, p. 119128.
SprinkleJ., and KolataD.R., 1982, “Rhomb-bearing” camerate, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monograph, v. 1, p. 206211.
SprinkleJ., and MooreR.C., 1978, Hybocrinida, in Moore, R. C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. T564T574.
StadlerT., 2010, Sampling-through-time in birth-death trees: Journal of Theoretical Biology, v. vol. 267, p. 396404.
StadlerT., and YangZ., 2013, Dating phylogenies with sequentially sampled tips: Systematic Biology, v. 62, p. 674688.
StadlerT., KouyosR., WylV., von, YerlyS., BöniJ., BürgisserP., KlimkaitT., JoosB., RiederP., XieD., GünthardH.F., DrummondA.J., and BonhoefferS., the Swiss HIV Cohort Study, 2012, Estimating the basic reproductive number from viral sequence data: Molecular Biology and Evolution, v. 29, p. 347357.
SummersM.M., MessingC.G., and RouseG.W., 2014, Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): A new classification and an assessment of morphological characters for crinoid taxonomy: Molecular Phylogenetics and Evolution, v. 80, p. 319339.
SwoffordD.L., 2002, PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4: Massachusetts, Sinauer Associates.
SwoffordD.L., OlsenG.J., WaddellP.J., and HillisD.M., 1996, Phylogenetic inference, in Hillis, D.M., Moritz, C., and Mable, B.K., eds., Molecular Systematics (second edition): Massachusetts, Sinauer, p. 407514.
UbaghsG., 1969, Aethocrinus moorei Ubaghs n. gen., n. sp., le Plus ancien Crinoide dicyclique Connu: University of Kansas Paleontological Contributions, Paper 38, p. 125.
UbaghsG., 1978, Origin of crinoids, in Moore, R.C., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part T, Echinodermata 2: Lawrence, Geological Society of America and University of Kansas Press, p. T275T281.
UlrichE.O., 1925, The lead, zinc, and fluorspar deposits of Western Kentucky; Chapter 2, Stratigraphic geology: U. S. Geological Survey, Professional Paper 36, p. 2271.
WagnerPJ., 1998, A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa: Paleobiology, v. 24, p. 430449.
WagnerP.J., 1999, The utility of fossil data in phylogenetic analyses: A likelihood example using Ordovician-Silurian species of the Lophospiridae (Gastropoda: Murchisoniina): American Malacological Bulletin, v. 15, p. 132.
WagnerP.J., 2000a, Phylogenetic analyses and the fossil record: Tests and inferences, hypotheses, and models: Paleobiology, v. 26, p. 341371.
WagnerP.J., 2000b, The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity: Systematic Biology, v. 49, p. 6586.
WagnerP.J., 2000c, Exhaustion of morphologic character states among fossil taxa: Evolution, v. 54, p. 365386.
WagnerP.J., 2012, Modelling rate distributions using character compatibility: Implications for morphological evolution among fossil invertebrates: Biology Letters, v. 8, p. 143146.
WagnerP.J., and MarcotJ.D., 2010, Probabilistic phylogenetic inference in the fossil record: Current and future applications, in Alroy, J., and Hunt, G., eds., Quantitative Methods in Paleobiology: The Paleontological Society Papers, v. 16, p. 189211.
WagnerP.J., and MarcotJ.D., 2013, Modelling distributions of fossil sampling rates over time, space and taxa: Assessment and implications for macroevolutionary studies: Methods in Ecology and Evolution, v. 4, p. 703713.
WalcottC.D., 1884, Descriptions of new species of fossils from the Trenton Group of New York: New York State Museum of Natural History, Annual Report, v. 35, p. 207214.
WebsterG.D., 2003, Bibliography and index of Paleozoic crinoids, coronates, and hemistreptocrinoids, 1758–1999: Geological Society of America Special Paper 363.
WebsterG.D., and JellP.A., 1999, New Permian crinoids from Australia: Memoirs of the Queensland Museum, v. 33, p. 349359.
WebsterG.D., and MaplesC.G., 2006, Cladid crinoid (Echinodermata) anal conditions: A terminology problem and proposed solution: Palaeontology, v. 49, p. 187212.
WebsterG.D., and MaplesC.G., 2008, Cladid crinoid radial facets, brachials, and arm appendages: A terminology solution for studies of lineage, classification, and paleoenvironment, in Ausich, W.I., and Webster, G.D., eds., Echinoderm Paleobiology: Bloomington, Indiana University Press, p. 197226.
WebsterG.D., MaplesC.G., MawsonR., and DastanpourM., 2003, A cladid-dominated Early Mississippian crinoid and conodont fauna from Kerman Province, Iran and revision of the glossocrinids and rhenocrinids: Journal of Paleontology, Memoir 60, v. 77, suppl. to no. 3, 35 p.
WellerS., and DavidsonA.D., 1896, Petalocrinus mirabilis (n. sp.) and a new American fauna: Journal of Geology, v. 4, p. 166173.
WetherbyA.G., 1880, Remarks on the Trenton Limestone of Kentucky, with descriptions of new fossils from that formation and the Kaskaskia (Chester) Group, Sub-carboniferous: Journal of the Cincinnati Society of Natural History, v. 3, p. 144160.
WheelerW.C., 2012, Systematics: A course of lectures: Chichester, John Wiley and Sons, 426 p.
WheelerW.C., and PickettK.M., 2007, Topology-Bayes versus Clade-Bayes in phylogenetic analysis: Molecular Biology and Evolution, v. 25, p. 447453.
WrightA.M., and HillisD.M., 2014, Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data: PloS One, v. 9, e109210.
WrightD.F., 2015, Fossils, homology, and “Phylogenetic Paleo-ontogeny”: A reassessment of primary posterior plate homologies among fossil and living crinoids with insights from developmental biology: Paleobiology, v. 41, p. 570591.
WrightD.F., and AusichW.I., 2015, From the stem to the crown: Phylogeny and diversification of pan-cladid crinoids, in Zamora, S., and Rábano, I., eds., Progress in Echinoderm Paleobiology: Cuadernos del museo Geominero, 19, Instituto Geológico y Minero de España, p. 199202.
WrightD.F., and StigallA.L., 2013, Phylogenetic revision of the Late Ordovician orthid brachiopod genera Plaesiomys and Hebertella from Laurentia: Journal of Paleontology, v. 87, p. 11071128.
WrightD.F., AusichW.I., ColeS.R., PeterM.E., and RhenburgE.C., 2017, Phylogenetic taxonomy and classification of the Crinoidea: Journal of Paleontology, doi:10.1017/jpa.2016.142.
XieW., LewisP.O., FanY., KuoL., and ChenM.–H., 2010, Improving marginal likelihood estimation for Bayesian phylogenetic model selection: Systematic Biology, v. 60, p. 150160.
YangZ., 2014, Molecular Evolution: A Statistical Approach: Oxford, Oxford University Press, 492 p.
ZhangC., StadlerT., KlopfsteinS., HeathT.A., and RonquistF., 2016, Total-evidence dating under the fossilized birth–death process: Systematic Biology, v. 65, p. 228249.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 74
Total number of PDF views: 378 *
Loading metrics...

Abstract views

Total abstract views: 1643 *
Loading metrics...

* Views captured on Cambridge Core between 8th February 2017 - 24th October 2017. This data will be updated every 24 hours.