Skip to main content Accessibility help

Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia

  • Marc Laflamme (a1), James G. Gehling (a2) and Mary L. Droser (a3)


Exquisitely preserved three-dimensional examples of the classic Ediacaran (late Neoproterozoic; 570–541 Ma) frond Charniodiscus arboreus Jenkins and Gehling, 1978 (herein referred to as Arborea arborea Glaessner in Glaessner and Daily, 1959) are reported from the Ediacara Member, Rawnsley Quartzite of South Australia, and allow for a detailed reinterpretation of its functional morphology and taxonomy. New specimens cast in three dimensions within sandy event beds showcase detailed branching morphology that highlights possible internal features that are strikingly different from rangeomorph and erniettomorph fronds. Combined with dozens of well-preserved two-dimensional impressions from the Flinders Ranges of South Australia, morphological variations within the traditional Arborea morphotype are interpreted as representing various stages of external molding. In rare cases, taphomorphs (morphological variants attributable to preservation) represent composite molding of internal features consisting of structural supports or anchoring sites for branching structures. Each primary branch consists of a central primary branching stalk from which emerge several oval secondary branches, which likely correspond to similar structures found in rare two-dimensional specimens. Considering this new evidence, previous synonymies within the Arboreomorpha are no longer justified, and we suggest that the taxonomy of the group be revised.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted distribution, and reproduction in any medium, provided the original work is properly cited.


Hide All
Bambach, R.K., Bush, A.M., and Erwin, D.H., 2007, Autecology and the filling of ecospace: Key metazoan radiations: Palaeontology, v. 50, p. 122.
Boag, T.H., Darroch, S.A.F., and Laflamme, M., 2016, Ediacaran distributions in space and time: Testing assemblage concepts of earliest macroscopic body fossils: Paleobiology, v. 42, p. 574594.
Brasier, M.D., and Antcliffe, J.B., 2009, Evolutionary relationships within the Avalonian Ediacara biota: New insights from laser analysis: Journal of the Geological Society, London, v. 166, p. 363384.
Brasier, M.D., Antcliffe, J.B., and Liu, A.G., 2012, The architecture of Ediacaran Fronds: Palaeontology, v. 55, p. 11051124.
Brasier, M.D., Liu, A.G., Menon, L.R., Matthews, J.J., McIlroy, D., and Wacey, D., 2013, Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland: A hydraulic model: Precambrian Research, v. 231, p. 122135.
Budd, G.E., and Jensen, S., 2015, The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution: Biological Reviews, v. 92, p. 446473.
Burzynski, G., and Narbonne, G.M., 2015, The discs of Avalon: Relating discoid fossils to frondose organisms in the Ediacaran of Newfoundland, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 434, p. 3445.
Bush, A.M., Bambach, R.K., and Erwin, D.H., 2011, Ecospace utilization during the Ediacaran radiation and the Cambrian eco-explosion, in Laflamme, M., Schiffbauer, J.D., and Dornbos, S.Q., eds., Quantifying the Evolution of Early Life: Numerical and Technological Approaches to the Evaluation of Fossils and Ancient Ecosystems: Topics in Geobiology, v. 36: Dordrecht, The Netherlands, Springer, p. 111133.
Callow, R.H.T., and Brasier, M.D., 2009, Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models: Earth-Science Reviews, v. 96, p. 207219.
Clapham, M.E., and Narbonne, G.M., 2002, Ediacaran epifaunal tiering: Geology, v. 30, p. 627630.
Darroch, S.A.F., Laflamme, M., Schiffbauer, J.D., and Briggs, D.E.G., 2012, Experimental formation of a microbial death mask: Palaios, v. 27, p. 293303.
Darroch, S.A.F., Sperling, E.A., Boag, T.H., Racicot, R.A., Mason, S.J., Morgan, A.S., Tweedt, S., Myrow, P., Johnston, D.T., Erwin, D.H., and Laflamme, M., 2015, Biotic replacement and mass extinction of the Ediacara biota: Proceedings of the Royal Society B-Biological Sciences, v. 282, p. 129138.
Darroch, S.A.F., Boag, T.H., Racicot, R.A., Tweedt, S., Mason, S.J., Erwin, D.H., and Laflamme, M., 2016, A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 459, p. 198208.
Dececchi, T.A., Narbonne, G.M., Greentree, C., and Laflamme, M., 2017, Relating Ediacaran fronds: Paleobiology, v. 43, p. 171180.
Droser, M.L., and Gehling, J.G., 2015, The advent of animals: The view from the Ediacaran: Proceedings of the National Academy of Sciences USA, v. 112, p. 48654870.
Droser, M.L., Gehling, J.G., and Jensen, S.R., 2006, Assemblage palaeoecology of the Ediacara biota: The unabridged edition?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, p. 131147.
Dzik, J., 1999, Organic membranous skeleton of the Precambrian metazoans from Namibia: Geology, v. 27, p. 519522.
Dzik, J., 2002, Possible ctenophoran affinities of the Precambrian “seapen” Rangea : Journal of Morphology, v. 252, p. 315334.
Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and Peterson, K.J., 2011, The Cambrian conundrum: Early divergence and later ecological success in the early history of animals: Science, v. 334, p. 10911097.
Fedonkin, M.A., and Waggoner, B.M., 1997, The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism: Nature, v. 388, p. 868871.
Ford, T.D., 1958, Precambrian fossils from Charnwood Forest: Proceedings of the Yorkshire Geological Society, v. 31, Pt. 3, p. 211217.
Gehling, J.G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks: Palaios, v. 14, p. 4057.
Gehling, J.G., 2000, Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia: Precambrian Research, v. 100, p. 6595.
Gehling, J.G., and Droser, M.L., 2009, Textured organic surfaces associated with the Ediacara biota in South Australia: Earth-Science Reviews, v. 96, p. 196206.
Gehling, J.G., and Droser, M.L., 2013, How well do fossil assemblages of the Ediacara biota tell time? Geology, v. 41, p. 447450.
Gehling, J.G., Droser, M.L., Jensen, S., and Runnegar, B.N., 2005, Ediacaran organisms: Relating form to function, in Briggs, D.E.G., ed., Evolving Form and Function: Fossils and Development, Proceedings of a Symposium Honoring Adolf Seilacher for His Contributions to Palaeontology in Celebration of His 80th Birthday: New Haven, Connecticut, Peabody Museum of Natural History, Yale University, p. 43–67.
Germs, G.J.B. 1973, A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa. 6, 110.
Ghisalberti, M., Gold, D., Laflamme, M., Clapham, M.E., Narbonne, G.M., Summons, R.E., Johnston, D.T., and Jacobs., D.K., 2014, Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes: Current Biology, v. 24, p. 305309.
Glaessner, M.F., 1979, Biogeography and biostratigraphy: Precambrian, in Moore, R.C. (founder), Robinson, R.A., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Pt. A, Introduction, Fossilization (Taphonomy), Biogeography and Biostratigraphy: Boulder, Colorado, Geological Society of America: Lawrence, Kansas, University of Kansas Press, p. 79118.
Glaessner, M.F., and Daily, B., 1959, The geology and late Precambrian fauna of the Ediacara fossil reserve: Records of the South Australian Museum, v. 13, p. 369407.
Glaessner, M.F., and Wade, M., 1966, The late Precambrian fossils from Ediacara, South Australia: Palaeontology, v. 9, p. 599628.
Grazhdankin, D.V., 2014, Patterns of evolution of the Ediacaran soft-bodied biota: Paleontology, v. 45, p. 5778.
Grazhdankin, D.V., Balthasar, U., Nagovitsin, K.E., and Kochnev, B.B., 2008, Carbonate-hosted Avalon-type fossils in arctic Siberia: Geology, v. 36, p. 803806.
Gurich, G. 1929, Die altesten fossilien Sudafrika. Zeitschrift fur Praktische Geologie, 37:85.
Gurich, G. 1930, Die bislang altesten Spuren von Organismen in Sudafrika. In: XV International Geological Congress, South Africa, 1929, 2, 670680.
Ivantsov, A.Y., 2016, Reconstruction of Charniodiscus yorgensis (macrobiota from the Vendian of the White Sea): Paleontological Journal, v. 50, p. 112.
Ivantsov, A.Y., Narbonne, G.M., Trusler, P.W., Greentree, C., and Vickers-Rich, P., 2016, Elucidating Ernietta: New insights from exceptional specimens in the Ediacaran of Namibia: Lethaia, v. 49, p. 540554.
Jenkins, R.J.F., 1996, Aspects of the geological setting and palaeobiology of the Ediacara assemblage, in Davies, M., Twidale, C.R., and Tyler, M.J., eds., Natural History of the Flinders Ranges, v. Vol. 7: Richmond, South Australia, Royal Society of South Australia, p. 3345.
Jenkins, R.J.F., and Gehling, J.G., 1978, A review of the frond-like fossils of the Ediacara assemblage: Records of the South Australian Museum, v. 17, p. 347359.
Jenkins, R.J.F. 1985, The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 11:336–355.
Kenchington, C.G., and Wilby, P., 2014, Of time and taphonomy: Preservation in the Ediacaran, in Laflamme, M., Schiffbauer, J.D., and Darroch, S.A.F., eds., Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization: Geological Society of America Paleontological Society Papers series, v. 20, p. 101122.
Knoll, A.H., Walter, M.R., Narbonne, G.M., and Christie-Blick, N., 2006, The Ediacaran Period: A new addition to the geologic time scale: Lethaia, v. 39, p. 1330.
Laflamme, M., and Narbonne, G.M., 2008a, Competition in a Precambrian world: Palaeoecology of Ediacaran fronds: Geology Today, v. 24, p. 182187.
Laflamme, M., and Narbonne, G.M., 2008b, Ediacaran fronds: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 162179.
Laflamme, M., Narbonne, G.M., and Anderson, M.M., 2004, Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland: Journal of Paleontology, v. 78, p. 827837.
Laflamme, M., Narbonne, G.M., Greentree, C., and Anderson, M.M., 2007, Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland, In Vickers-Rich, P., and Komarower, P., eds., The Rise and Fall of the Ediacaran Biota: Geological Society Special London, v. 286, p. 237257.
Laflamme, M., Schiffbauer, J.D., Narbonne, G.M., and Briggs, D.E.G., 2011, Microbial biofilms and the preservation of the Ediacara biota: Lethaia, v. 44, p. 203213.
Laflamme, M., Flüde, L.I., and Narbonne, G.M, 2012, Ecological tiering and the evolution of a stem: The oldest stemmed frond from the Ediacaran of Newfoundland, Canada: Journal of Paleontology, v. 86, p. 193200.
Laflamme, M., Darroch, S.A.F., Tweedt, S., Peterson, K.J., and Erwin, D.H., 2013, The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire cat?: Gondwana Research, v. 23, p. 558573.
Liu, A.G., 2016, Framboidal pyrite shroud confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms: Palaios, v. 31, p. 259274.
Liu, A.G., McIlroy, D., and Brasier, M.D., 2010, First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland: Geology, v. 38, p. 123126.
Liu, A.G., McIlroy, D., Antcliffe, J.B., and Brasier, M.D., 2011, Effaced preservation in the Ediacara biota and its implications for the early macrofossil record: Palaeontology, v. 54, p. 607630.
MacGabhann, B.A., 2014, There is no such thing as the ‘Ediacara Biota’: Geoscience Frontiers, v. 5, p. 5362.
Martin, M.W., Grazhdankin, D.V., Bowring, S.A., Evans, D.A.D., Fedonkin, M.A., and Kirschvink, J.L., 2000, Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution: Science, v. 288, p. 841845.
Matthews, J.J., Liu, A.G., and McIlroy, D., 2017, Post-fossilization processes and their implications for understanding Ediacaran macrofossil assemblages: Geological Society, London, Special Publications, v. 448, p. 251269.
Menon, L.R., McIlroy, D., and Brasier, M.D., 2013, Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella : Geology, v. 41, p. 895898.
Narbonne, G.M., 2004, Modular construction of early Ediacaran complex life forms: Science, v. 305, p. 11411144.
Narbonne, G.M., 2005, The Ediacaran biota: Neoproterozoic origin of animals and their ecosystems: Annual Review of Earth Planet Sciences, v. 33, p. 421442.
Narbonne, G.M., Saylor, B.Z., and Grotzinger, J.P., 1997, The youngest Ediacaran fossils from Southern Africa: Journal of Paleontology, v. 71, p. 953967.
Narbonne, G.M., Dalrymple, R.W., and Gehling, J.G., 2001, Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Field Trip B5: Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, St. John’s, Newfoundland, 98 p.
Narbonne, G.M., Laflamme, M., Greentree, C., and Trusler, P., 2009, Reconstructing a lost world: Ediacaran Rangeomorphs from Spaniard’s Bay, Newfoundland: Journal of Paleontology, v. 83, p. 503523.
Seilacher, A., 1992, Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution: Journal of the Geological Society of London, v. 149, p. 607613.
Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H., Hunter, J., Xu, H., Peng, Y., and Kaufman, A.J., 2014, A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression: Nature Communications, v. 5, p. 5754.
Schiffbauer, J.D., Huntley, J.W., O’Neil, G.R., Darroch, S.A.F., Laflamme, M., and Cai, Y., 2016, The latest Ediacaran wormworld fauna: Setting the ecological stage for the Cambrian explosion: GSA Today, v. 26, p. 411.
Singer, A., Plotnick, R.E., and Laflamme, M., 2012, Experimental fluid mechanics of an Ediacaran Frond: Palaeontologia Electronica, v. 15, 14 p.
Tarhan, L.G., Gehling, J.G., and Droser, M.L., 2010, Taphonomic controls on Ediacaran diversity: Uncovering the holdfast origin of morphologically variable enigmatic structures: Palaios, v. 25, p. 823830.
Tarhan, L.G., Hood, A.S., Droser, M.L., Gehling, J.G., and Briggs, D.E.G., 2016, Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans: Geology, v. 44, p. 951954.
Vickers-Rich, P., et al., 2013, Reconstructing Rangea: New Discoveries from the Ediacaran of Southern Namibia: Journal of Paleontology, v. 87, p. 115.
Waggoner, B., 2003, The Ediacaran biotas in space and time: Integrated and Comparative Biology, v. 43, p. 104113.
Williams, G.C., 1997, Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a re-evaluation of Ediacaran frond-like fossils, and synopsis of the history of evolutionary thought regarding the sea pens, in den Hartog, J.C., ed., Coelenterate Biology: Proceedings of the 6th International Conference of Coelenterate Biology, Leiden, Nationaal Natuurhistorisch Museum, p. 497–509.
Xiao, S., and Laflamme, M., 2009, On the eve of animal radiation: Phylogeny, ecology, and evolution of the Ediacara Biota: Trends in Ecology and Evolution, v. 24, p. 3140.
Xiao, S., Droser, M., Gehling, J.G., Hughes, I.V., Wan, B., Chen, Z., and Yuan, X., 2013, Affirming life aquatic for the Ediacara biota in China and Australia: Geology, v. 41, p. 10951098.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed