Skip to main content
×
Home
    • Aa
    • Aa

Developmental paleobiology of the vertebrate skeleton

  • Martin Rücklin (a1) (a2), Philip C. J. Donoghue (a1), John A. Cunningham (a1), Federica Marone (a3) and Marco Stampanoni (a3) (a4)...
Abstract

Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary.

In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM), to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. D. Brazeau 2009. The braincase and jaws of a Devonian ‘acanthodian' and modern gnathostome origins. Nature, 457:305308.

C. J. Burrow 2003. Comment on “Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates.” Science, 300:1661.

R. Cloutier 2010. The fossil record of fish ontogenies: Insights into developmental patterns and processes. Seminars in Cell and Developmental Biology, 21:400413.

J. A. Cunningham , M. Rücklin , H. Blom , H. Botella , and P. C. J. Donoghue 2012. Testing models of dental development in the earliest bony vertebrates, Andreolepis and Lophosteus. Biology Letters, 8:833837.

A. J. Curtin , A. A. Macdowell , E. G. Schaible , and V. L. Roth 2012. Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. Journal of Vertebrate Paleontology, 32:939955.

S. P. Davis , J. A. Finarelli , and M. I. Coates 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature, 486:247250.

M. C. C. de Pinna 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics, 7:415–394.

M. Dierolf , A. Menzel , P. Thibault , P. Schneider , C. M. Kewish , P. Wepf , O. Bunk , and F. Pfeiffer 2010. Ptychograpic X-ray computed tomography at the nanoscale. Nature, 467:436439.

P. C. J. Donoghue , S. Bengtson , X.-P. Dong , N. J. Gostling , T. Huldtgren , J. A. Cunningham , C. Yin , Z. Yue , F. Peng , and M. Stampanoni 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442:680683.

P. C. J. Donoghue and I. J. Sansom 2002. Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique, 59:352372.

P. C. J. Donoghue , I. J. Sansom , and J. P. Downs 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 306B:278294.

J. P. Downs and P. C. J. Donoghue 2009 . Skeletal histology of Bothriolepis canadensis (Placodermi, Antiarchi) and evolution of the skeleton at the origin of jawed vertebrates. Journal of Morphology, 270:13641380.

S. Giles , M. Rücklin , and P. C. J. Donoghue 2013. Histology of “placoderm” dermal skeletons: Implications for the nature of the ancestral gnathostome. Journal of Morphology, 274:627644.

B. K. Hall 2003a. Descent with modification: The unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews, 78:409433.

Z. Johanson and M. M. Smith 2003. Placoderm fishes, pharyngeal denticles, and the vertebrate dentition. Journal of Morphology, 257:289307.

Z. Johanson and M. M. Smith 2005. Origin and evolution of gnathostome dentitions: A question of teeth and pharyngeal denticles in placoderms. Biological Reviews of the Cambridge Philosophical Society, 80:303345.

N. Klein and P. M. Sander 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology, 34:247263.

F. Marone and M. Stampanoni 2012. Regridding reconstruction algorithm for real time tomographic imaging. Journal of Synchrotron Radiation, 19:19.

T. Ørvig 1980. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs 3. Structure and growth of gnathalia of certain arthrodires. Zoologica Scripta, 9:141159.

W.-E. Reif 1976. Morphogenesis, pattern formation and function of the dentition of Heterodontus (Selachii). Zoomorphologie, 83:147.

W.-E. Reif 1978b. Types of morphogenesis of the dermal skeleton in fossil sharks. Paläontologische Zeitschrift, 52:110128.

W.-E. Reif 1980. Development of dentition and dermal skeleton in embryonic Scyliorhinus canicula. Journal of Morphology, 166:275288.

M. Rücklin , S. Giles , P. Janvier , and P. C. J. Donoghue 2011. Teeth before jaws? Comparative analysis of the structure and development of the external and internal scales in the extinct jawless vertebrate Loganellia scotica. Evolution and Development, 13:523532.

S. Sanchez , V. Dupret , P. Tafforeau , K. M. Trinajstc , B. Ryll , P.-J. Gouttenoire , L. Wretman , L. Zylberberg , F. Peyrin , and P. E. Ahlberg 2013. 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography. PloS ONE, 8:e56992.

P. M. Sander and N. Klein 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science, 310:18001802.

P. M. Sander , O. Mateus , T. Laven , and N. Knötschke 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature, 441:739741.

M. M. Smith 2003. Vertebrate dentitions at the origin of jaws: When and how pattern evolved. Evolution and Development, 5:394413.

M. M. Smith and Z. Johanson 2003 . Separate evolutionary origin of teeth from evidence in fossil jawed vertebrates. Science, 299:12351236.

W. J. Sollas 1903. A method for the investigation of fossils by serial sections. Philosophical Transactions of the Royal Society, B, 196:259265.

I. B. Sollas and W. J. Sollas 1913. A study of a Dicynodon by means of serial sections. Philosophical Transactions of the Royal Society, B, 204:201225.

K. Stein and E. Prondvai 2013. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biological Reviews, 89:2447.

F. R. Straehl , T. M. Scheyer , A. M. Forasiepi , R. D. MacPhee , and M. R. Sánchez-Villagra 2013. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE, 8: e69275.

M. Sutton 2008 . Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society, B, 275:15871593.

P. Tafforeau , R. Boistel , E. Boller , A. Bravin , M. Brunet , Y. Chaimanee , P. Cloetens , M. Feist , J. Hoszowska , J.-J. Jaeger , R. F. Kay , V. Lazzari , L. Marivaux , A. Neil , C. Nemoz , X. Thibault , P. Vignaud , and S. Zabler 2006. Applications of X-ray synchrotron microtomography for nondestructive 3D studies of paleontological specimens. Applied Physics A, Materials Science and Processing, 83:195202.

Y. Teshima , A. Matsuoka , M. Fujiyoshi , Y. Ikegami , T. Keneko , S. Oouchi , Y. Watanabe , and K. Yamazawa 2010. Enlarged skeleton models of plankton for tactile teaching. Lecture Notes in Computer Science, 6180:523526.

G. P. Wagner 2000. What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations? Journal of Experimental Zoology, Molecular and Developmental Evolution, 288:9598.

G. P. Wagner and H. C. E. Larsson 2003. What is the promise of developmental evolution? Part III: The crucible of developmental evolution. Journal of Experimental Zoology, 300B:14.

W. C. Williamson 1849. On the microscopic structure of the scales and dermal teeth of some ganoid and placoid fish. Philosophical Transactions of the Royal Society of London, 139:435475.

W. C. Williamson 1851. Investigations into the structure and development of the scales and bones of fishes. Philosophical Transactions of the Royal Society of London, 141:643702.

G. C. Young 2003. Did placoderm fish have teeth? Journal of Vertebrate Paleontology, 23:987990.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 67 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.