Skip to main content Accessibility help

Scratch Traces of Large Ediacara Bilaterian Animals

  • James G. Gehling (a1) (a2), Bruce N. Runnegar (a3) and Mary L. Droser (a4)


Ediacara fan-shaped sets of paired scratches Kimberichnus teruzzii from the Ediacara Member of the Rawnsley Quartzite, South Australia, and the White Sea region of Russia, represent the earliest known evidence in the fossil record of feeding traces associated with the responsible bilaterian organism. These feeding patterns exclude arthropod makers and point to the systematic feeding excavation of seafloor microbial mats by large bilaterians of molluscan grade. Since the scratch traces were made into microbial mats, animals could crawl over previous traces without disturbing them. The trace maker is identified as Kimberella quadrata, whose death masks co-occur with the mat excavation traces in both Russia and South Australia. The co-occurrence of animals and their systematic feeding traces in the record of the Ediacara biota supports previous trace fossil evidence that bilaterians existed globally before the Cambrian explosion of life in the ocean.



Hide All
Aller, R. C. 1983. The effects of macrobenthos on chemical properties of marine sediment and overlying water, p. 53102. In McCall, P. L. and Tevesz, M. J. S. (eds.), Animal-Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, New York.
Alpert, S. P. 1975. Planolites and Skolithos from the upper Precambrian–lower Cambrian, White Inyo Mountains, California. Journal of Paleontology, 49:508521.
Antcliffe, J. B., Gooday, A. J., and Brasier, M. D. 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology, 54:1,1571,175.
Banks, N. L. 1970. Trace fossils from the late Precambrian and lower Cambrian of Finnmark, Norway. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal, Special Issue 3:1934.
Bergström, J. 1990. Precambrian trace fossils and the rise of bilaterian animals. Ichnos, 1:313.
Bottjer, D. J. and Droser, M. L. 1994. The history of Phanerozoic bioturbation, p. 155176. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, Chichester.
Bottjer, D.J., Hagadorn, W. J., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.
Brasier, M. D., McIlroy, D., Liu, A. G., Antcliffe, J. B., and Menon, L. R. 2013. The oldest evidence of bioturbation on Earth: Comment. Geology, e289, doi:10.1130 /G33606Y.1.
Buatois, L. and Mangáno, M. G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, 358 p.
Brusca, R. C. and Brusca, G. J. 2003. Invertebrates, 2nd edition. Sinauer Associates, Inc. Sunderland, Massachusetts, 936 p.
Bulcao, C. and Hodgson, A. N. 2012. Activity and feeding of Dotilla fenestrata (Brachyura: Ocypodidae) in a warm, temperate South African estuary. African Journal of Aquatic Science, 37:333338.
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S., 2013 Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.
Clites, E. C., Droser, M. L., and Gehling, J. G. 2012. The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology, 40:307310.
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace fossils. Paleobiology, 26:4755.
Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T. 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176:110.
Crimes, T. P. 1970. Trilobite and other trace fossils from the upper Cambrian of North Wales. Geological Journal, 7:4768.
Crimes, T. P. 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124:97119.
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic–Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.
Crimes, T. P. 1994. The period of early evolution failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian–Cambrian boundary, p. 105133. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, New York.
Crimes, T. P. and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of southwest Africa (Namibia). Journal of Paleontology, 56:890907.
Daily, B. 1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt. Scott Range, Flinders Ranges, South Australia. Search, 4:202205.
Dornbos, S. Q., Bottjer, D. J., and Chen, J.-Y. 2004. Precambrian animal life: evidence for seafloor microbial mats and associated metazoan lifestyles in lower Cambrian phosphorites of Southwest China. Lethaia, 37:127137.
Droser, M. L, Gehling, J. G., and Jensen, S. 1999. When the worm turned: concordance of early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology, 27:625628.
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2005. Ediacaran trace fossils: true and false, p. 127140. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development; a symposium honoring the scientific contributions of Adolf Seilacher in celebrating his 80th birthday; 2005 Apr 1–2, New Haven. New Haven Peabody Museum of Natural History, Tale University.
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147.
Droser, M. L, Jensen, S., and Gehling, J. G. 2002 a. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences, 99:12,57212,576.
Droser, M. L, Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002 b. Lowermost Cambrian Ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian Substrates. Palaios, 17:315.
Dzik, J. 2007. The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian-Cambrian transition, p. 405414. In Vickers-Rich, P. and Kommaroer, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:1,0911,097.
Farmer, J., Vidal, G., Moczydlowska, M., Strauss, H., Ahlberg, P., and Siedlecka, A. 1992. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geological Magazine, 129:181195.
Fedonkin, M. A. 1977. Precambrian–Cambrian ichnocoenoses of the East-European platform, p. 183194. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal, Special Issue 9.
Fedonkin, M. A. 1992. Vendian faunas and early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.
Fedonkin, M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications, p. 157179. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.
Fedonkin, M. A. and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.
Garcia-Bellido, D. C., Paterson, J. R., and Edgecombe, G. D. 2013. Cambrian palaeoscolecids (Cycloneuralia) from Gondwana and re-appraisal of species assigned to Palaeoscolex . Gondwana Research, 24:780795.
Gaucher, C., Poiré, D. G., Bossi, J, Bettucci, L. S., and Beri, Á., 2013. Comment on “Bilaterian burrows and grazing behavior at >585 million years ago”. Science, 339:906.
Gehling, J. G. 1986. Algal binding of siliciclastic sediments: a mechanism in the preservation of Ediacaran fossils. Twelfth International Sedimentological Congress, Canberra Abstracts, 117.
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Journal of Geological Society of India Memoir, 20:181224.
Gehling, J. G. 1996. Taphonomy of the Terminal Proterozoic Ediacara Biota, South Australia. Unpublished Ph.D. Thesis, University of California, Los Angeles, 222 p.
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.
Gehling, J. G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research, 100:6595.
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth Science Reviews, 96:196206.
Gehling, J. G. and Droser, M. L. 2012. Ediacaran stratigraphy and the biota of the Adelaide Geosyncline, South Australia. Episodes, 35:236246.
Gehling, J. G. and Droser, M. L. 2013. How well do assemblages of the Ediacara Biota tell time? Geology, 41:447450.
Gehling, J. G., Droser, M. L., Jensen, S., and Runnegar, B. N. 2005. Ediacaran organisms: relating form to function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development. Proceedings of a Symposium Honoring Adolf Seilacher for his contributions to palaeontology in celebration of his 80th Birthday. Peabody Museum of Natural History, Yale University, New Haven, Connecticut, U.S.A.
Gehling, J. G. and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacara Fauna, Pound Subgroup, South Australia. Journal of Paleontology, 70:185195.
Germs, G. J. B. 1972. Trace fossils from the Nama Group, South-West Africa. Journal of Paleontology, 46:864870.
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.
Glaessner, M. F. 1984. The Dawn of Animal Life. A Biohistorical Study. Cambridge University Press, Cambridge, 244 p.
Glaessner, M. F. and Daily, B., 1959. The geology and late Precambrian fauna of the Ediacaran fossil reserve. Records of the South Australian Museum, 13:369401.
Glaessner, M. F. and WADE, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.
Goldring, R. 1985. The formation of the trace fossil Cruziana . Geological Magazine, 122:6572.
Goldring, R. and Seilacher, A. 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 137:422442.
Grazhdankin, D. V. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203221.
Grazhdankin, D. V. and Bronnikov, A. A. 1997. A new locality of the remains of the late Vendian soft-bodied organisms on the Onega Peninsula. Transactions (Doklady) of the Russian Academy of Sciences/Earth Science Sections, 357A:1,3111,315.
Grazhdankin, D. and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210.
Grazhdankin, D., Maslov, A. V., Mustill, T. M. R., and Krupenin, M. T. 2005. The Ediacaran White Sea biota in the central Urals. Doklady Earth Science, 401A:382385.
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.
Haines, P.W. 2000. Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research, 100:97108.
Hagadorn, J. W. and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian–Cambrian transition. Palaios, 14:7385.
Hickman, C. S. 1983. Radular patterns, systematics, diversity and ecology of deep-sea limpets. Veliger, 26:792.
Hickman, C. S. and Morris, T. E. 1985. Gastropod feeding tracks as a source of data in analysis of the functional morphology of radulae. Veliger, 27:357365.
Horodyski, R. J. 1993. Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western U.S.A. Precambrian Research, 61:241278.
Howe, M. P. A., Evans, M., Carney, J. N., and Wilby, P. R. 2012. New perspectives on the globally important Ediacaran fossil discoveries in Charnwood Forest, UK: Harley's 1848 prequel to Ford (1958). Proceedings of the Yorkshire Geological Society, 59:137144.
Ivantsov, A. Yu. 2009. New reconstruction of Kimberella. Problematic Vendian metazoan. Paleontological Journal, 43:601611.
Ivantsov, A. Yu. 2010. Paleontological evidence for the supposed Precambrian occurrence of mollusks. Paleontological Journal, 44:1,5521,559.
Ivantsov, A. Yu. 2013. Trace fossils of Precambrian metazoans “Vendobionta” and Mollusks”. Stratigraphy and Geological Correlation, 21:252264.
Ivantsov, A. Yu. and Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Science [English Trans.], 385A:618622.
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Palaeontographica Americana, 54:95104.
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York, 570 p.
Jenkins, R. J. F. 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research, 73:5169.
Jenkins, R. J. F., Ford, C. H., and Gehling, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia, 30:101119.
Jensen, S. 2003.The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.
Jensen, S., Gehling, J. G., and Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature, 393:567569.
Jensen, S., Droser, M. L., and Gehling, J. G., 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:1929.
Jensen, S., Droser, M. L., and Gehling, J. G., 2006. A critical look at the Ediacaran trace fossil record, p. 115157. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Palaeontology. Springer, Netherlands.
Lai, J. H., del Alamo, J. C., Rodrîguez-Rodrîguez, J., and Lasheras, J. C. 2010. The mechanics of adhesion locomotion of terrestrial gastropods. The Journal of Experimental Biology, 213:3,9203,933.
Landing, E. 1994. Precambrian–Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22:179182.
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.
Martin, M. W., Grazhdankin, D. M., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288:841845.
Martinsson, A. 1965. Aspects of a middle Cambrian thanatotope on Öland. Geologiska Föreningens i Stockholm, Förhandlingar, 87:181230.
McIlroy, D. and Logan, G. A., A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios, 14:5872.
Menon, L. R., McIlroy, D., and Brasier, M. D. 2013. Evidence for Cnidaria-like behavior in ca. 560 Ma. Ediacaran Aspidella . Geology, 41:289292.
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the upper Ediacaran enigmatic ribbon-like fossil Shaanxilithes . Palaios, 27:354372.
Mount, J. F. and McDonald, C. 1992. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic–early Cambrian metazoan radiation, Australia. Geology, 20:1,0311,034.
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Reviews Earth Planetary Science, 33:421442.
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology, 33:945980.
Nedin, C. and Jenkins, R. J. F. 1991. Re-evaluation of unconformities separating the “Ediacaran” and Cambrian Systems, South Australia. Comment. Palaios, 6:102105.
Noffke, N. 2009. The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews, 96:173180.
Pecoits, E., Konhauser, K. O., Aubet, N. R., Heaman, L. M., Veroslavsky, G., Stern, R., and Gingras, M. K. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science, 336:1,6931,696.
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions, Royal Society B, 363:1,4351,443.
Pflüger, F. P. 1999. Matground structures and redox facies. Palaios, 14:2539.
Pflüger, F. P. and Gresse, P. 1996. Microbial sand chips—a non-actualistic sedimentary structure. Sedimentary Geology, 102:263274.
Retallack, G. J. 2013. Ediacaran life on land. Nature, 493:8992.
Rogov, V., Marusin, V., Bykova, N., Goy, Y., Nagovitsin, K., Kochnev, B., Karlova, G., and Grazhdankin, D. 2012. The oldest evidence of bioturbation on Earth. Geology, 40:395398.
Saylor, B. Z., Grotzinger, J. P., and Germs, J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research, 73:153171.
Schieber, J. 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 14:312.
Seilacher, A. 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones, p. 447476. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Seel House Press, Liverpool, 547 p.
Seilacher, A. 1984. Late Precambrian and early Cambrian Metazoa: preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth History. Dahlem Konferenzen. Springer-Verlag, Berlin, 450 p.
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia, 22:229239.
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.
Seilacher, A. 2007. Trace Fossil Analysis. Springer Verlag, Heidelberg, 226 p.
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology, 227:323356.
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: the dawn of animal life in the shadows of giant protests. Paleontological Research, 7:4354.
Seilacher, A. and Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution, p. 97105. In Krumbein, W. E., Paterson, D. M., and Stal, L. J. (eds.), Biostabilization of Sediments. Bibliotheks und Informationssystem, Universität Oldenburg, 526 p.
Sperling, E. and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development, 12:201209.
Sprigg, R. C. 1947. Early Cambrian (?) jellyfish from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 71:212223.
Sprigg, R. C. 1949. Early Cambrian “jellyfishes” at Ediacara, South Australia and Mount, John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 73:7299.
Tarhan, L. G., Hughes, N. C., Myrow, P. M., Bhargava, O. N., Ahluwalia, A. D., and Kudryavtsev, A. B. 2013. Precambrian–Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningqiangensis from the Lesser Himalaya of India. Palaeontology, in press. DOI: 10.1111/pala.12066.
Trusler, P., Stilwell, J., and Vickers-Rich, P. 2007. Comment: future research directions for further analysis of Kimberella , p. 181185. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publication 286.
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126:851859.
Vannier, J., Calandra, I., Gaillard, C., and Zylinska, A. 2010. Priapulid worms: pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology, 38:711714.
Vidal, G., Jensen, S., and Palacios, T. 1994. Neoproterozoic (Vendian) ichnofossils from lower Alcudian strata in central Spain. Geological Magazine, 131:169179.
Voigt, E. 1977. On grazing traces produced by the radula of fossils and recent gastropods and chitons, p. 335346. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils, 2nd edition. Seel House Press, 547 p.
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197225.
Walcott, C. D. 1920. Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67:261364.
Walter, M. R., Elphinstone, R., and Heys, G. R. 1989. Proterozoic and early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa, 13:209256.
Weber, B. M., Steiner, M., and Zhu, M.-Y. 2007. Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology, 254:328349.

Related content

Powered by UNSILO

Scratch Traces of Large Ediacara Bilaterian Animals

  • James G. Gehling (a1) (a2), Bruce N. Runnegar (a3) and Mary L. Droser (a4)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.