Skip to main content

A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids

  • Jeffrey R. Thompson (a1), Elizabeth Petsios (a1) and David J. Bottjer (a1)

The Permian is regarded as one of the most crucial intervals during echinoid evolution because crown group echinoids are first widely known from the Permian. New faunas provide important information regarding the diversity of echinoids during this significant interval as well as the morphological characterization of the earliest crown group and latest stem group echinoids. A new fauna from the Capitanian Lamar Member of the Bell Canyon Formation in the Guadalupe Mountains of West Texas comprises at least three new taxa, including Eotiaris guadalupensis Thompson n. sp. an indeterminate archaeocidarid, and Pronechinus? sp. All specimens represented are silicified and known from disarticulated or semiarticulated interambulacral and ambulacral plates and spines. This assemblage is one of the most diverse echinoid assemblages known from the Permian and, as such, informs the paleoecological setting in which the earliest crown group echinoids lived. This new fauna indicates that crown group echinoids occupied the same environments as stem group echinoids of the Archaeocidaridae and Proterocidaridae. Furthermore, the echinoids described herein begin to elucidate the order of character transitions that likely took place between stem group and crown group echinoids. At least one of the morphological innovations once thought to be characteristic of early crown group echinoids, crenulate tubercles, was in fact widespread in a number of stem group taxa from the Permian as well. Crenulate tubercles are reported from two taxa, and putative cidaroid style U-shaped teeth are present in the fauna. The presence of crenulate tubercles in the archaeocidarid indicates that crenulate tubercles were present in stem group echinoids, and thus the evolution of this character likely preceded the evolution of many of the synapomorphies that define the echinoid crown group.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A diverse assemblage of Permian echinoids (Echinodermata, Echinoidea) and implications for character evolution in early crown group echinoids
      Available formats
Hide All
Agassiz L., and Desor E., 1846, catalogue raisonné des families, des generes et des espéces de la classe des Échinodermes: Annales des Sciences Naturelles, Troisiéme Série, Zoologie, v. 6, p. 305374.
Babcock L.C., 1977, Life in the Delaware Basin: The paleoecology of the Lamar Limestone, in Upper Guadalupian Facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas: Permian Basin Section SEPM Publication 79-18, p. 357–389.
Bather F.A., 1909, Eocidaris and some species referred to it: Annals and Magazine of Natural History Decade 8, v. 33, p. 4366.
Bell M.A., and Lloyd G.T., 2015, strap: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence: Palaeontology, v. 58, p. 379389.
Behnken F.H., 1975, Leonardian and Guadalupian (Permian) conodont biostratigraphy in western and southwestern United States: Journal of Paleontology, v. 49, p. 284315.
Boos M.F., 1929, Stratigraphy and fauna of the Luta Limestone (Permian) of Oklahoma and Kansas: Journal of Paleontology, v. 3, p. 241–253. Butts, S.H., and Briggs, D.E.G., 2011, Silicification through time, in Allison, P.A., and Bottjer, D.J., eds., Taphonomy: Process and Bias Through Time: Dordrecht, Springer, p. 411–434.
Cherns L., and Wright V.P., 2000, Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea: Geology, v. 28, p. 791794.
Cherns L., and Wright V.P., 2009, Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record: Palaios, v. 24, p. 756771.
Clapham M.E., 2015, Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusk transition: Paleobiology, v. 42, p. 266279.
Cooper A.G., and Grant R.E., 1972, Permian Brachiopods of West Texas, part I: Smithsonian Contributions to Paleobiology, v. 14, p. 1231.
de Beer M., 1990, Distribution patterns of regular sea urchins (Echinodermata: Echinoidea) across the Spermonde Shelf, SW Sulawesi (Indonesia), in de Ridder, C., Dubois, P., and Lahaye, C., eds., Echinoderm Research. Proceedings of the Second European Conference on Echinoderms, Brussels, Belgium, 18–21 September 1989: Rotterdam, A. A. Balkema, p. 165–169.
de Koninck L., 1863, Description of some fossils from India, discovered by Dr. A. Fleming, of Edinburgh: Quarterly Journal of the Geological Society of London, v. 19, p. 119.
de Koninck L., 1882, Notice sur un échinooïde gigantesque du calcaire carbonifére de Belgique: Association francaise pour l’Avancement des Sciences, Compte Rendu de la 10e Session, Alger, p. 514515.
Desor E., 1855–1858, Synopsis des échinides fossiles: Paris, Reinwald, 490 p.
Döderlein L., 1887, Die Japanischen Seeigel. I Theil. Familie Cidaridae und Salenidae: Stuttgart, E. Schweizerbartsche Verlagshandlung, 60 p.
Donoghue P.C.J., 2005, Saving the stem group—a contradiction in terms?: Paleobiology, v. 31, p. 553558.
Donoghue P.C.J., and Purnell M.A., 2005, Genome duplication, extinction and vertebrate evolution: TRENDS in Ecology and Evolution, v. 20, p. 314319.
Donovan S.K., 2001, Evolution of Caribbean echinoderms during the Cenozoic: Moving towards a complete picture using all of the fossils: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 166, p. 177192.
Donovan S.K., Lewis D.N., and Crabb P., 2003, Lower Carboniferous echinoderms of North-West England: Palaeontological Association Fold-Out Fossils, v. 1.
Durham J.W., and Melville R.V., 1957, A classification of echinoids: Journal of Paleontology, v. 31, p. 242272.
Erwin D. H., 1993, The Great Paleozoic Crisis: Life and Death in the Permian: New York, Columbia University Press, 327 p.
Erwin D.H., 1994, The Permo-Triassic extinction: Nature, v. 367, p. 231236.
Etheridge R., 1892, A monograph of the Permo-Carboniferous invertebrata of New South Wales Part II.-Echinodermata, Annelida, and Crustacea: Memoirs of the Geological Survey of New South Wales: Paleontology, v. 5, p. 1132.
Gagnon J., and Gilkinson K.D., 1994, Discrimination and distribution of the sea urchins Strongylocentrotus droebachiensis (O.F. Müller) and S. pallidus (G. O. Sars) in the Northwest Atlantic: Sarsia, v. 79, p. 111.
Geinitz H.B., 1848, Die Versteinerungen des deutschen Zechsteingebirges und Rothliegenden oder des Permischen Systems in Sachsen: Dresden and Leipzig, Arnoldische Buchhandlung, 26 p.
Gordon C.M., and Donovan S.K., 1992, Disarticulated echinoid ossicles in paleoecology and taphonomy: The last interglacial Falmouth Formation of Jamaica: Palaios, v. 7, p. 157166.
Gortani M., 1905, Fossili carboniferi del M. Pizzul e de piano di Lanza nelle Alpi Carniche: Bolletino Società Geologica Italiana, v. 24, p. 521597.
Groves J.R., and Wang Y., 2013, Timing and size selectivity of the Guadalupian (middle Permian) Fusulinoidean extinction: Journal of Paleontology, v. 87, p. 183196.
Hall J., 1858, Report on the Geological Survey of the State of Iowa: Embracing the results of investigations made during portions of the years, 1855, 56 & 57: Geological Survey of Iowa, 724 p.
Hawkins H.L., 1935, Two genera of Carboniferous Echinoidea (Lepidocidaris and Hyattechinus) new to Britain: Quarterly Journal of the Geological Society, v. 91, p. 239250.
Henderson C.M., Davyvov V.I., and Wardlaw B.R., 2012, The Permian Period, in Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., eds., The Geologic Timescale 2012: Amsterdam, Elsevier, p. 653680.
Hlebszevitsch J.C., and Cortiñas J.S., 2009, El Registro más antiguo de echinoidea en Argentina y el contacto Pérmico-Jurásico inferior en la region del Río Geona, Chubut: Revista de la Associación Geológica Argentina, v. 65, p. 479486.
Hoare R.D., and Sturgeon M.T., 1976, Echinoid remains from the Pennsylvanian Vanport Limestone (Allegheny Group), Ohio: Journal of Paleontology, v. 50, p. 1324.
Hollingworth N., and Pettigrew T., 1988, Zechstein Reef Fossils and Their Palaeoecology: London, The Palaeontological Association, 75 p.
Hopkins M.J., and Smith A.B., 2015, Dynamic evolutionary change in post-Palaeozoic echinoids and the importance of scale when interpreting changes in rates of evolution: Proceedings of the National Academy of Sciences of the United States of America, v. 112, p. 3758–3763.
Jackson R.T., 1912, Phylogeny of the Echini, with a revision of Palaeozoic species: Memoirs of the Boston Society of Natural History, v. 7, p. 1491.
Jackson R.T., 1929, Palaeozoic echini of Belgium: Mémoires du Musée Royal D’Histoire Naturelle de Belgique, v. 38, p. 196.
Kier P.M., 1958a, New American Paleozoic echinoids: Smithsonian Miscellaneous Collections, , v. 135, p. 126.
Kier P.M., 1958b, Permian echinoids from West Texas: Journal of Paleontology, v. 32, p. 889892.
Kier P.M., 1965, Evolutionary trends in Paleozoic echinoids: Journal of Paleontology, v. 39, p. 436465.
Kier P.M., 1977, Triassic echinoids: Smithsonian Contributions to Paleobiology, v. 30, p. 186.
Kier P.M., 1984, Echinoids from the Triassic (St. Cassian) of Italy, their lantern supports, and a revised phylogeny of Triassic echinoids: Smithsonian Contributions to Paleobiology, v. 56, p. 141.
Kier P.M., and Grant R.E., 1965, Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida: Smithsonian Miscellaneous Collections, v. 149, p. 168.
Kittl E., 1904, Geologie der Umgebung von Sarajevo: Jahrbuch der k. k. geologischen Reichsanstalt, v. 53, p. 516748.
König V.H., 1982, Unterpermische Seeigel aus Kreta (Griechenland): Neues Jahrbuch für Geologie und Palaontologie. Monatshefte, v. 3, p. 167175.
Kozur H., 1992, Dzhulfian and early Changxingian (late Permian) Tethyan conodonts from the Glass Mountains, West Texas: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 187, p. 99114.
Kroh A., 2007, Climate changes in the early to middle Miocene of the Central Paratethys and the origin of its echinoderm fauna: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 253, p. 169207.
Kroh A., and Smith A.B., 2010, The phylogeny and classification of post-Palaeozoic echinoids: Journal of Systematic Palaeontology, v. 8, p. 147212.
Kutscher M., and Reich M., 2004, Archaeocidarid and bothriocidarid Echinozoa from the Silurian of Gotland, Sweden, in Heinzeller T., and Nebelsick, J.H., eds., Echinoderms: München: Proceedings of the 11th International Echinoderm Conference, 6–10 October 2003, Munich Germany: London, Taylor and Francis Group, p. 457–458.
Lambert J., 1899, Échinodermes: Revue critique de Paleozoologie, v. 3, p. 8284.
Lambert J., 1900, Étude sur quelques échinides de l’infra-Lias et du Lias: Bulletin de la Société des Sciences Historiques et Naturelles de l’Yonne, v. 53, p. 357.
Lambert L.L., 2006, Taxonomic update for Reef Trail conodonts illustrated in Wilde et al. 1999, in Hinterlong, G., ed., Basinal Facies of the Uppermost Guadalupian: Applicability to Exploration and Development Projects; Field Trip Guidebook Permian Basin Section, SEPM Publication 2006-46: Midland, Society for Sedimentary Geology. Permian Basin Section, p. 7885.
Lambert L.L., Wardlaw B.R., Nestell M.K., and Nestell G.P., 2002, Latest Guadalupian (middle Permian) conodonts and foraminifers from West Texas: Micropaleontology, v. 48, p. 343364.
Lambert L.L., Bell G.L., Fronimos J.A., Wardlaw B.R., and Yisa M.O., 2010, Conodont biostratigraphy of a more complete Reef Trail Member section near the type section, latest Guadalupian Series type region: Micropaleontology, v. 56, p. 233256.
Leske N.G., 1778, Iacobi Theodori Klein Naturalis disposito Echinodermatum, Edita et aucta a N.G. Leske: Leipzig, G.E. Beer, 278 p.
Leupke G., 1976, Archaeocidaris spines from the Permian Scherrer Formation, Southeastern Arizona: Journal of the Arizona Academy of Science, v. 11, p. 8788.
Lewis D.N., and Donovan S.K., 2007, A standardized method of describing fossils, using Echinoidea as an example: Scripta Geologica, v. 134, p. 109118.
Lewis D.N., and Ensom P.C., 1982, Archaeocidaris whatleyensis sp. nov. (Echinoidea) from the Carboniferous Limestone of Somerset, and notes on echinoid phylogeny: Bulletin of the British Museum of Natural History (Geology), v. 36, p. 77104.
Linse K., Walker L.J., and Barnes D.K.A., 2008, Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica: Antarctic Science, v. 20, p. 227244.
Makovicky P.J., and Zanno L.E., 2011, Theropod diversity and the refinement of avian characteristics, in Dyke, G., and Kaiser, G., eds., Living Dinosaurs: The Evolutionary History of Modern Birds: Oxford, John Wiley & Sons, p. 929.
Matthieu G., 1949, Contribution a l’étude des monts troglodytes dans l’extreme Sud-Tunisien: Geologie regionale des environs de Matmata Medenine et Foum-Tatahouine: Tunis, Imprimerie S.A.P.I., 78 p.
M’Coy F., 1844, A Synopsis of the Characters of the Carboniferous Limestone Fossils of Ireland: Dublin, University Press, 207 p.
Mihály S., 1980, Echinoidea maradványok a Bükk hegység felsöpermjéböl: A Magyar Állami Földtani Intézet Évi Jelentése, v. 1978, p. 399412.
Nebelsick J.H., 1996, Biodiversity of shallow-water Red Sea Echinoids: Implications for the fossil record: Journal of the Marine Biological Association of the United Kingdom, v. 76, p. 185194.
Nowak M.D., Smith A.B., Simpson C., and Zwickl D.J., 2013, A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses: PLoS ONE, v. 8, p. 113.
Payne J.L., and Clapham M.E., 2012, End-Permian mass extinction in the oceans: An ancient analog to the twenty-first century: Annual Review of Earth and Planetary Sciences, v. 40, p. 89111.
Pomel A., 1883, Classification méthodique et Genera des Échinides vivantes et fossiles. Thèses présentées à la Faculté des Sciences de Paris pour obtenir le Grade de Docteur és Sciences Naturelles 503: Algiers, Adolphe Jourdan, 131 p.
Prosser C.S., 1895, The classification of the upper Paleozoic rocks of Central Kansas: The Journal of Geology, v. 3, p. 764800.
Reich M., 2007, Linguaserra spandeli sp. nov. (Echinodermata: Ophiocistioidea) from the late Permian (Zechstein) of Thuringia, Germany: Annales de Paléontologie, v. 93, p. 317330.
Reich M., and Smith A.B., 2009, Origins and biomechanical evolution of teeth in echinoids and their relatives: Palaeontology, v. 52, p. 11491168.
Sansom R.S., and Wills M.A., 2013, Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees: Scientific Reports, v. 3, no. 2545.
Sansom R.S., Gabbott S.E., and Purnell M.A., 2010, Non-random decay of chordate characters causes bias in fossil interpretation: Nature, v. 463, p. 797800.
Schneider C.L., 2010, Epibionts on late Carboniferous through early Permian echinoid spines from Texas, USA, in Harris, L.G., Böttger, S.A., Walker, C.W., and Lesser, M.P., eds., Echinoderms: Durham: Proceedings of the 12th International Echinoderm Conference, 7–11 August 2006, Durham, New Hampshire, U.S.A.: Durham, CRC Press, p. 71–76.
Schneider C.L., Sprinkle J., and Ryder D., 2005, Pennsylvanian (late Carboniferous) echinoids from the Winchell Formation, North-Central Texas, USA: Journal of Paleontology, v. 79, p. 745762.
Shumard B.F., and Swallow G.C., 1858, Descriptions of new fossils from the coal measures of Missouri and Kansas: Transactions of the Academy of Science of St. Louis, v. 1, p. 198227.
Simpson R.D., 1976, Systematic paleontology and paleoenvironmental analysis of the upper Permian Hueco Formation, Robledo and Dona Ana Mountains, Dona Ana County, New Mexico [Master Thesis]: El Paso, University of Texas, 256 p.
Smith A.B., 1980a, Stereom microstructure of the echinoid test: Special Papers in Palaeontology, v. 25, p. 185.
Smith A.B., 1980b, The structure and arrangement of echinoid tubercles: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, v. 289, 154.
Smith A.B., 1984, Echinoid Palaeobiology: London, George Allen and Unwin, 190 p.
Smith A.B., 1994, Triassic echinoids from Peru: Palaeontographica Abteilung A, v. 233, p. 177202.
Smith A.B., 2007, Intrinsic versus extrinsic biases in the fossil record: Contrasting the fossil record of echinoids in the Triassic and Early Jurassic using sampling data, phylogenetic analysis, and molecular clocks: Paleobiology, v. 33, p. 310323.
Smith A.B., and Hollingworth N.T.J., 1990, Tooth structure and phylogeny of the upper Permian echinoid Miocidaris keyserlingi: Proceedings of the Yorkshire Geological and Polytechnic Society, v. 48, p. 47–60.
Smith A.B., and Kroh A., 2011, The Echinoid Directory: (accessed July 31, 2015).
Smith A.B., and Savill J.J., 2001, Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 92, p. 137147.
Smith A.B., Pisani D., Mackenzie-Dodds J.A., Stockley B., Webster B.L., and Littlewood T.J., 2006, Testing the molecular clock: Molecular and paleontological estimates of divergence times in the echinoidea (Echinodermata): Molecular Biology and Evolution, v. 23, p. 18321851.
Spreng A.C., and Howe W.B., 1963, Echinoid jaws from the Mississippian and Pennsylvanian of Missouri: Journal of Paleontology, v. 37, p. 931938.
Stanley D.G., 1979, Paleoecology, structure, and distribution of Triassic coral buildups in western North America: The University of Kansas Paleontological Contributions, v. 65, p. 158.
Stanley G.D., 1989, An Upper Triassic reefal limestone, southern Vancouver Island, B.C.: Canadian Society of Petroleum Geologists, Memoir, v. 13, p. 766776.
Stanley G.D., 1994, Upper Triassic corals from Peru: Palaeontographica Abteilung A, v. 233, p. 7598.
Stanley S.M., and Yang X., 1994, A double mass extinction at the end of the Paleozoic era: Science, v. 226, p. 13401344.
Thompson J.R., and Ausich W.I., 2016, Facies distribution and taphonomy of echinoids from the Fort Payne Formation (late Osagean, early Viséan, Mississippian) of Kentucky: Journal of Paleontology, v. 90, p. 239249.
Thompson J.R., and Denayer J., 2016, Revision of echinoids from the Tournaisian (Mississippian) of Belgium and the importance of disarticulated material in assessing palaeodiversity: Geological Journal, doi: 10.1002/gj.2783 (in online early view).
Thompson J.R., Crittenden J., Schneider C.L., and Bottjer D.J., 2015a, Lower Pennsylvanian (Bashkirian) echinoids from the Marble Falls Formation, San Saba, Texas, USA: Neues Jarbuch für Geologie und Paläntologie, v. 276, p. 7989.
Thompson J.R., Petsios E., Davidson E.H., Erkenbrack E.M., Gao F., and Bottjer D.J., 2015b, Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid: Scientific Reports, v. 5, no. 15541.
Twitchett R.J., and Oji T.O., 2005, Early Triassic recovery of echinoderms: Comptes Rendus Palevol, v. 4, p. 531542.
Vadet A., 1991, Révision des Cidaris du Lias et du Dogger Européens: Mémoires de la Société Académique du Boulonnais, v. 10, p. 1175.
von Buch L., 1840, Beiträge zur Bestimmung der Gerbirgsformationen in Russland: Archiv für Mineralogie, Geognosie, Bergbau und Hüttenkunde, v. 15, p. 1128.
Waagen W.H., 1885, Productus limestone fossils, Part V: Salt Range Fossils: Palaeontologia Indica, Series 13, v. 1, p. 771834.
Wanner J., 1941, Neue Beiträge sur Kenntnis der permischen Echinodermen von Timor, XV. Echinoidea: Palaeontographica Supplement, v. 4, p. 297314.
Wardlaw B.R., 2008, Paleontologic database for the Guadalupe Peak 1:100,000 Quadrangle: A prototype for the National Paleontologic Database, Paleodata: U.S. Geological Survey Open-File Report 2008–1141, p. 1–99.
Wardlaw B.R., and Mei S.L., 1998, A discussion of the early reported species of Clarkina (Permian Conodonta) and the possible origin of the genus, in Jin, Y.G., Wardlaw, B.R., and Wang, Y., eds. Permian Stratigraphy, Environments and Resources, Volume 2: Stratigraphy and Environments: Palaeoworld, v. 9, p. 33–52.
Webster G.D., and Jell P.A., 1992, Permian echinoderms from western Australia: Memoirs of the Queensland Museum, v. 32, p. 311373.
Wright V.P., Cherns L., and Hodges P., 2003, Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution: Geology, v. 31, p. 211214.
Zonneveld J.P., 2001, Middle Triassic biostromes from the Liard Formation, British Columbia, Canada: Oldest examples from the Mesozoic of NW Pangea: Sedimentary Geology, v. 145, p. 317341.
Zonneveld J.P., Henderson C.M., Stanley G.D., Orchard M.J, and Gingras M.K., 2007, Oldest scleractinian coral reefs on the North American craton: Upper Triassic (Carnian), northeastern British Columbia, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, p. 421450.
Zonneveld J.P., Furlong C.M., and Sanders S.C., 2015, Triassic echinoids (Echinodermata) from the Aksala Formation, North Lake Laberge, Yukon Territory, Canada: Papers in Palaeontology, v. 2, p. 114.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 26
Total number of PDF views: 139 *
Loading metrics...

Abstract views

Total abstract views: 386 *
Loading metrics...

* Views captured on Cambridge Core between 18th April 2017 - 21st January 2018. This data will be updated every 24 hours.