Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T00:37:20.087Z Has data issue: false hasContentIssue false

Early Eocene fossils elucidate the evolutionary history of the Charadriiformes (shorebirds and allies)

Published online by Cambridge University Press:  22 September 2023

Gerald Mayr*
Affiliation:
Ornithological Section, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Andrew C. Kitchener
Affiliation:
Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
*
*Corresponding author.

Abstract

We report charadriiform and charadriiform-like birds from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK). A partial skeleton of a small modern-type charadriiform is described as a new species, Charadriisimilis essexensis n. gen. n. sp., and most closely resembles taxa of the Charadrii (plovers, stilts, oystercatchers, and other “wader-like” shorebirds). Affinities to this clade were also supported by phylogenetic analyses, which placed the fossil as the sister taxon of either the Burhinidae or all crown group Charadrii. In addition, we identify specimens of the charadriiform-like taxon Scandiavis, which was before known only from the early Eocene Fur Formation in Denmark. Associated limb elements of two individuals are classified as Scandiavis cf. mikkelseni Bertelli et al., 2013, and remains of two further individuals are tentatively assigned to Scandiavis. The presence of a processus supracondylaris dorsalis on the previously unknown humerus corroborates charadriiform affinities of Scandiavis, whereas a plesiomorphic hypotarsus morphology indicates a position outside crown group Charadriiformes. Charadriisimilis essexensis is one of the earliest modern-type charadriiforms, and the holotype of the species is the most substantial early Paleogene fossil record of a charadriiform bird. Together with Scandiavis, as the best-represented taxon to be considered as a stem group charadriiform, it provides the basis for an improved understanding of the evolutionary history of charadriiform birds.

UUID: http://zoobank.org/ca15ee81-09e8-4577-8beb-a362debf6636

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldiss, D.T., 2012, The stratigraphical framework for the Palaeogene successions of the London Basin, UK: British Geological Survey Open Report OR/12/004, 87 p.Google Scholar
Ballmann, P., 1979, Fossile Glareolidae aus dem Miozän des Nördlinger Ries (Aves: Charadriiformes): Bonner Zoologische Beiträge, v. 30, p. 51101.Google Scholar
Ballmann, P., 2004, Fossil Calidrinae (Aves: Charadriiformes) from the middle Miocene of the Nördlinger Ries: Bonner Zoologische Beiträge, v. 52, p. 101114.Google Scholar
Benson, R.D., 1999, Presbyornis isoni and other late Paleocene birds from North Dakota, in Olson, S.L., ed., Avian Paleontology at the Close of the 20th Century: Proceedings of the 4th International Meeting of the Society of Avian Paleontology and Evolution, Washington, D.C., 4–7 June 1996: Smithsonian Contributions to Paleobiology, v. 89, p. 253259.Google Scholar
Bertelli, S., Lindow, B.E.K., Dyke, G.J., and Mayr, G., 2013, Another charadriiform-like bird from the lower Eocene of Denmark: Paleontological Journal, v. 47, p. 12821301.CrossRefGoogle Scholar
Bochenski, Z.M., Wertz, K., Tomek, T., and Gorobets, L., 2019, A new species of the late Miocene charadriiform bird (Aves: Charadriiformes), with a summary of all Paleogene and Miocene Charadrii remains: Zootaxa, v. 4624, p. 4158.CrossRefGoogle Scholar
Boles, W.E., 1999, Early Eocene shorebirds (Aves: Charadriiformes) from the Tingamarra Local Fauna, Murgon, Queensland, Australia: Records of the West Australian Museum, Supplement, v. 57, p. 229238.Google Scholar
Černý, D., and Natale, R., 2022, Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes): Molecular Phylogenetics and Evolution, v. 177, n. 107620, https://doi.org/10.1016/j.ympev.2022.107620.CrossRefGoogle Scholar
Collinson, M.E., Adams, N.F., Manchester, S.R., Stull, G.W., Herrera, F., Smith, S.Y., Andrew, M.J., Kenrick, P., and Sykes, D., 2016, X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: a critical evaluation: Botany, v. 94, p. 697711.CrossRefGoogle Scholar
De Pietri, V.L., Mayr, G., and Scofield, R.P., 2020, Becassius charadriioides, an early Miocene pratincole-like bird from France: with comments on the early evolutionary history of the Glareolidae (Aves, Charadriiformes): Paläontologische Zeitschrift, v. 94, p. 107124.CrossRefGoogle Scholar
De Pietri, V.L., Worthy, T.H., Scofield, R.P., Cole, T.L., Wood, J.R., et al., 2021, A new extinct species of Polynesian sandpiper (Charadriiformes: Scolopacidae: Prosobonia) from Henderson Island, Pitcairn Group, and the phylogenetic relationships of Prosobonia: Zoological Journal of the Linnean Society, v. 192, p. 10451070.CrossRefGoogle Scholar
Gmelin, J.F., 1788–1793, Caroli a Linné Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species; cum characteribus, differentiis, synonymis, locis. Editio decimo tertia, aucta, reformata, v. 1–3: Lipsiae, Impensis Georg Emanuel Beer, 1516 p.Google Scholar
Harrison, C.J.O., and Walker, C.A., 1977, Birds of the British lower Eocene: Tertiary Research Special Papers, v. 3, 52 p.Google Scholar
Hartlaub, G., 1841, Nouvelle espèce de Bec en fourreau (Chionis): Revue Zoologique par La Société Cuvierienne, v. 4, p. 56.Google Scholar
Heingård, M., Musser, G., Hall, S.A., and Clarke, J.A., 2021, New remains of Scandiavis mikkelseni inform avian phylogenetic relationships and brain evolution: Diversity, v. 13, p. 651.CrossRefGoogle Scholar
Hood, S.C., Torres, C.R., Norell, M.A., and Clarke, J.A., 2019, New fossil birds from the earliest Eocene of Mongolia: American Museum Novitates, v. 3934, 24 p.Google Scholar
Hou, L., and Ericson, P.G.P., 2002, A middle Eocene shorebird from China: The Condor, v. 104, p. 896899.CrossRefGoogle Scholar
Huxley, T.H., 1867, On the classification of birds: and on the taxonomic value of the modifications of certain of the cranial bones observable in that class: Proceedings of the Zoological Society, London, v. 1867, p. 415471.Google Scholar
Jolley, D.W., 1996, The earliest Eocene sediments of eastern England: an ultra-high resolution palynological correlation, in Knox, R.W.O., Corfield, R.M., and Dunay, R.E., eds., Correlation of the Early Paleogene in Northwest Europe: Geological Society of London Special Publications, v. 101, p. 219254.Google Scholar
Kuhl, H., Frankl-Vilches, C., Bakker, A., Mayr, G., Nikolaus, G., Boerno, S.T., Klages, S., Timmermann, B., and Gahr, M., 2021, An unbiased molecular approach using 3'-UTRs resolves the avian family-level tree of life: Molecular Biology and Evolution, v. 38, p. 108127.CrossRefGoogle Scholar
Lichtenstein, H., 1823, Verzeichniss der Doubletten des Zoologischen Museums der Königl. Universität zu Berlin nebst Beschreibung vieler bisher unbekannter Arten von Säugethieren, Vögeln, Amphibien und Fischen: Berlin, T. Trautwein, 90 p.Google Scholar
Linnaeus, C., 1758, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (tenth edition): Holmiae, Laurentius Salvius, 824 p.Google Scholar
Linnaeus, C., 1766, Systema naturae per regna tria naturae (twelfth edition), v. 1, 2: Holmiae, Laurentius Salvius, 1328 p.Google Scholar
Mayr, G., 2000, Charadriiform birds from the early Oligocene of Céreste (France) and the middle Eocene of Messel (Hessen, Germany): Geobios, v. 33, p. 625636.CrossRefGoogle Scholar
Mayr, G., 2002, On the osteology and phylogenetic affinities of the Pseudasturidae—lower Eocene stem-group representatives of parrots (Aves, Psittaciformes): Zoological Journal of the Linnean Society, v. 136, p. 715729.CrossRefGoogle Scholar
Mayr, G., 2011, The phylogeny of charadriiform birds (shorebirds and allies)—reassessing the conflict between morphology and molecules: Zoological Journal of the Linnean Society, v. 161, p. 916943.CrossRefGoogle Scholar
Mayr, G., 2016a, The world's smallest owl, the earliest unambiguous charadriiform bird, and other avian remains from the early Eocene Nanjemoy Formation of Virginia (USA): Paläontologische Zeitschrift, v. 90, p. 747763.CrossRefGoogle Scholar
Mayr, G., 2016b, Variations in the hypotarsus morphology of birds and their evolutionary significance: Acta Zoologica, v. 97, p. 196210.CrossRefGoogle Scholar
Mayr, G., 2022, Paleogene Fossil Birds (second edition): Cham, Springer, 239 p.CrossRefGoogle Scholar
Mayr, G., De Pietri, V.L., and Scofield, R.P., 2022, New bird remains from the early Eocene Nanjemoy Formation of Virginia (USA), including the first records of the Messelasturidae, Psittacopedidae, and Zygodactylidae from the Fisher/Sullivan site: Historical Biology, v. 34, p. 322334.CrossRefGoogle Scholar
Mourer-Chauviré, C., Pickford, M., and Senut, B., 2017, New data on stem group Galliformes, Charadriiformes, and Psittaciformes from the middle Eocene of Namibia: Contribuciones del MACN, v. 7, p. 99131.Google Scholar
Musser, G., and Clarke, J.A., 2020, An exceptionally preserved specimen from the Green River Formation elucidates complex phenotypic evolution in Gruiformes and Charadriiformes: Frontiers in Ecology and Evolution, v. 8, n. 559929, https://doi.org/10.3389/fevo.2020.559929.CrossRefGoogle Scholar
Olson, S.L., 1985, The fossil record of birds, in Farner, D.S., King, J.R., and Parkes, K.C., eds., Avian Biology, v. 8: New York, Academic Press, 79238.CrossRefGoogle Scholar
Olson, S.L., and Parris, D.C., 1987, The Cretaceous birds of New Jersey: Smithsonian Contributions to Paleobiology, v. 63, 22 p.CrossRefGoogle Scholar
Panteleyev, A.V., 2011, [First bird remains from the Paleogene of Crimea], in Batashev, M.S., Makarov, N.P., and Martinovich, N.V., eds., [Dedicated to Arkadiy Yakovlevich Tugarinov, A Selection of Scientific Articles]: Krasnoyarsk, Krasnoyarsk Regional Museum, 8391. [in Russian]Google Scholar
Paton, T.A., Baker, A.J., Groth, J.G., and Barrowclough, G.F., 2003, RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds: Molecular Phylogenetics and Evolution, v. 29, p. 268278.CrossRefGoogle Scholar
Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M., and Lemmon, A.R., 2015, A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing: Nature, v. 526, p. 569573.CrossRefGoogle Scholar
Rayner, D., Mitchell, T., Rayner, M., and Clouter, F., 2009, London Clay fossils of Kent and Essex: Rochester, Kent, Medway Fossil and Mineral Society, 228 p.Google Scholar
Stegmann, B., 1963, Der Processus internus indicis im Skelett des Vogelflügels: Journal für Ornithologie, v. 104, p. 413423.CrossRefGoogle Scholar
Strauch, J.G. Jr., 1978, The phylogeny of the Charadriiformes (Aves): a new estimate using the method of character compatibility analysis: Transactions of the Zoological Society of London, v. 34, p. 263345.CrossRefGoogle Scholar
Swofford, D.L., 2002, PAUP* Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10: Sunderland, Sinauer Associates.Google Scholar
Weigel, R.D., 1963, Oligocene birds from Saskatchewan: Quarterly Journal of the Florida Academy of Sciences, v. 26, p. 257262.Google Scholar
Worthy, T.H., De Pietri, V.L., Scofield, R.P., and Hand, S.J., 2023, A new Eocene species of presbyornithid (Aves, Anseriformes) from Murgon, Australia: Alcheringa: An Australasian Journal of Palaeontology, https://doi.org/10.1080/03115518.2023.2184491.CrossRefGoogle Scholar