Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T15:54:41.733Z Has data issue: false hasContentIssue false

Evidence of oribatid mite detritivory in Antarctica during the late Paleozoic and Mesozoic

Published online by Cambridge University Press:  20 May 2016

Derek W. Kellogg
Affiliation:
1Department of Ecology and Evolutionary Biology and Natural History Museum and Biodiversity Research Center, University of Kansas, 1200 Sunnyside Ave., Lawrence 66045-7534 USA,
Edith L. Taylor
Affiliation:
1Department of Ecology and Evolutionary Biology and Natural History Museum and Biodiversity Research Center, University of Kansas, 1200 Sunnyside Ave., Lawrence 66045-7534 USA,

Abstract

Despite their importance in breaking down lignified tissue today, much is still unknown about the role of mites in the fossil record, especially with reference to the Paleozoic–Mesozoic transition. This study examines permineralized peat from three localities in the central Transantarctic Mountains, ranging in age from Permian to Jurassic, for evidence of diversity and abundance of wood-boring mites. Evidence of mites, in the form of coprolites and tunnels in wood and other tissues, was found at all three localities; the Triassic site included more than 10 times as many wood borings as the Permian site. Our results supplement prior evidence of wood-boring mites during the Mesozoic and thereby fill in the known geologic range of this plant/animal interaction.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, S. 2000. Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona. Journal of Paleontology, 74(6):10651071.CrossRefGoogle Scholar
Badejo, M. A. 1990. Seasonal abundance of soil mites (Acarina) in two contrasting environments. Biotropica, 22:382390.CrossRefGoogle Scholar
Bagnoli, G., Carnevale, G., and Bernini, F. 2000. Ordovician goes on land. Geological Society of America Abstracts with Programs, 32(7):A-14.Google Scholar
Bal, L. 1970. Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis. Geoderma, 4:536.CrossRefGoogle Scholar
Banks, H. P., and Colthart, B. J. 1993. Plant-animal-fungal interactions in Early Devonian trimerophytes from Gaspé, Canada. American Journal of Botany, 80:9921001.CrossRefGoogle Scholar
Barrett, P. J., and Elliot, D. H. 1973. Reconnaissance geologic map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica. U.S. Geological Survey Antarctic Geologic Map, A-3.Google Scholar
Barrett, P. J., Elliot, D. H., and Lindsay, J. F. 1986. The Beacon Supergroup (Devonian-Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier Area, Antarctica, p. 339428. In Turner, M. D. and Splettstoesser, J. D. (eds.), Geology of the Central Transantarctic Mountains (Antarctic Research Series, 36, paper 14). American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
Behan-Pelletier, V. M., and Bissett, B. 1994. Oribatida of Canadian peatlands. Memoirs of the Entomological Society of Canada, 169:7388.CrossRefGoogle Scholar
Berlese, A. 1923. Centuria sesta di Acari nuovi. Redia, 15:237262.Google Scholar
Brongniart, A. 1828. Prodrome d'une histoire d'un végétaux fossiles. Dictionnaire Sci. Nat., 57:16212.Google Scholar
Brues, C. T. 1936. Evidence of insect activity preserved in fossil wood. Journal of Paleontology, 10:637643.Google Scholar
Bulanova-Zachvatkina, Y. M. 1974. A new genus of mite (Acariformes, Oribatei) from the Upper Cretaceous of Taymyr. Paleontological Journal, 8:247250.Google Scholar
Chaloner, W. G., Scott, A. C., and Stephenson, J. 1991. Fossil evidence for plant-arthropod interactions in the Palaeozoic and Mesozoic. Philosophical Transactions of the Royal Society of London, 333B:177186.Google Scholar
Cichan, M. A., and Taylor, T. N. 1982. Wood-borings in Premnoxylon: Plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39:123127.CrossRefGoogle Scholar
Collinson, J. W. 1997. Paleoclimate of Permo-Triassic Antarctica, p. 10281034. In Ricci, C. A. (ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, Italy.Google Scholar
Crossley, D. A. Jr. 1970. Roles of microflora and fauna in soil systems, p. 3035. In Pesticides in the Soil: Ecology, Degradation and Movement (International Symposium on Pesticides in the Soil, 25–27 February 1970, Michigan State University). East Lansing.Google Scholar
Crossley, D. A. Jr., and Bohnsack, K. K. 1960. Long-term ecological study in the Oak Ridge area: III. The oribatid mite fauna in pine litter. Ecology, 41:628638.CrossRefGoogle Scholar
Edwards, D., Selden, P. A., Richardson, J. B., and Axe, L. 1995. Coprolites as evidence for plant-animal interactions in Siluro-Devonian terrestrial ecosystems. Nature, 377:329331.CrossRefGoogle Scholar
Elliot, D. H., Fleck, R. J., and Sutter, R. J. 1985. Potassium-argon age determination of Ferrar Group rocks, central Transantarctic Mountains, p. 197224. In Turner, M. D. and Splettstoesser, J. F. (eds.), Geology of the Central Transantarctic Mountains (Antarctic Research Series, 36, no. 10). American Geophysical Union, Washington, D.C.Google Scholar
Ewing, H. E. 1917. A synopsis of the genera of beetle mites with special reference to the North American fauna. Annals of the Entomological Society of America, 10:117132.CrossRefGoogle Scholar
Farabee, M. J., Taylor, E. L., and Taylor, T. N. 1990. Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 65:257265.CrossRefGoogle Scholar
Farabee, M. J., Taylor, E. L., and Taylor, T. N. 1991. Late Permian palynomorphs from the Buckley Formation, central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 69:353368.CrossRefGoogle Scholar
Galtier, J., and Phillips, T. L. 1999. The acetate peel technique, p. 6770. In Jones, T. P. and Rowe, N. P. (eds.), Fossil Plants and Spores: Modern Techniques. Geological Society, London.Google Scholar
Goth, K., and Wilde, V. 1992. Fraßpuren in permischen Hölzern aus der Wetterau. Senckenbergiana Lethaea, 72:16.Google Scholar
Grunow, A. M. 1999. Gondwana events and palaeogeography: A palaeomagnetic review. Journal of African Earth Sciences, 28(1):5369.CrossRefGoogle Scholar
Haarl⊘v, N. 1967. Arthropoda (Acarina, Diptera) from subfossil layers in West Greenland. Meddelelser om Gr⊘nland, 184:117.Google Scholar
Hammer, W. R. 1987. Paleoecology and phylogeny of the Trematosauridae, p. 7383. In McKenzie, G. D. (ed.), Gondwana Six: Stratigraphy, Sedimentology and Paleontology. American Geophysical Union, Washington, D.C.Google Scholar
Hansen, R. A. 2000. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology, 84:11201132.CrossRefGoogle Scholar
Hirst, S. 1923. On some arachnid remains from the Old Red Sandstone (Rhynie Chert bed, Aberdeenshire). Annals and Magazine of Natural History, series 9, 12:455474.CrossRefGoogle Scholar
Jarzembowski, E. A. 1990. A boring beetle from the Wealden of the Weald, p. 373376. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Jurasky, K. A. 1932. Frassgänge und Koprolithen eines Nagekäfers in liassischer Steinkohle. Zeitschrift der Deutschen Geologischen Gesellschaft, 84:656657.Google Scholar
Kevan, D. K. M. 1962. Soil Animals. H. F. and G. Witherby, London, 244 p.Google Scholar
Kevan, P. G., Chaloner, W. G., and Savile, D. B. O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology, 18:391417.Google Scholar
Krivolutsky, D. A., and Druk, A. Ya. 1986. Fossil oribatid mites. Annual Review of Entomology, 31:533545.CrossRefGoogle Scholar
Krivolutsky, D. A., and Ryabinin, N. A. 1976. Oribatid mites in Siberian and Far East amber. Doklady Akademiia Nauk SSSR, 230:945948. (In Russian)Google Scholar
Labandeira, C. C. 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26:329–77.CrossRefGoogle Scholar
Labandeira, C. C., Phillips, T. L., and Norton, R. A. 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12:319353.CrossRefGoogle Scholar
Lavelle, P. 1997. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27:93132.CrossRefGoogle Scholar
Lavelle, P., Lattaud, C., Trigo, D., and Barois, I. 1994. Mutualism and biodiversity in soils. Plant and Soil, 170:2333.CrossRefGoogle Scholar
Linck, O. 1949. Fossile Bohrgänge (Anobichnium simile n.g. n.sp.) an einem Keuperholz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 90B:180185.Google Scholar
Luxton, M. 1972. Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia, 12:434463.Google Scholar
MacFayden, A. 1964. Energy flow in ecosystems and its exploitation by grazing, p. 320. In Crisp, D. J. (ed.), Grazing in Terrestrial and Marine Environments (A symposium of the British Ecological Society, Bangor, 11–14 April 1962). Blackwell Scientific Publications, Oxford, U.K.Google Scholar
Mason, W. H., and Odum, E. P. 1969. The effect of coprophagy and bioelimination of radionuclides by detritus-feeding animals, p. 721724. In Nelson, D. J. and Evans, F. C. (eds.), Symposium on Radioecology, Proceedings (2nd National Symposium on Radioecology, University of Michigan). U.S. Atomic Energy Commission, Washington, D.C.Google Scholar
McLoughlin, S. 1994a. Late Permian plant megafossils from the Bowen Basin, Queensland, Australia: Part 2. Palaeontographica, Abt. B, 231:129.Google Scholar
McLoughlin, S. 1994b. Late Permian megafossils from the Bowen Basin, Queensland, Australia: Part 3. Palaeontographica, Abt. B, 231:3162.Google Scholar
Millay, M. A., and Taylor, T. N. 1990. New fern stems from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 62:4164.CrossRefGoogle Scholar
Niedbala, W. 1986. Systematics of Phthiracaroidea (Oribatida, Euptyctima). Acarologia, 27(1):6184.Google Scholar
Niedbala, W. 1991. Elements of zoogeography, p. 280290. In Niedbala, W., Phthiracaroidea (Acari, Oribatida). Elsevier, New York.Google Scholar
Norton, R. A. 1980. Observations on phoresy by oribatid mites (Acari: Oribatei). International Journal of Acarology, 6:121130.CrossRefGoogle Scholar
Norton, R. A., Bonamo, P. M., Grierson, J. D., and Shear, W. A. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology, 62:259269.CrossRefGoogle Scholar
Perty, M. 1839. Isis. Jena, 23 Hft. 11, 12: column 847.Google Scholar
Plumstead, E. M. 1963. The influence of plants and environment on the developing animal life of Karoo times. South African Journal of Science, 59:147152.Google Scholar
Ponge, J. F. 1984. Étude écologique d'un humus forestier par l'observation d'un petit Volume I, premiers résultats. La couche L1 d'un moder sous pin sylvestre. Revue d'Écologie et de Biologie du Sol, 21:161187.Google Scholar
Powell, C. McA., and Li, Z. X. 1994. Reconstruction of the Panthalassan margin of Gondwanaland, p. 59. In Veevers, J. J. and Powell, C. McA. (eds.), Permian-Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland. Geological Society of America Memoir, 184.CrossRefGoogle Scholar
Rex, G. M., and Galtier, J. 1986. Sur l'évidence d'interactions animal-végétal dans le Carbonifère inférieur français. Comptes Rendus de l'Académie des Sciences, Paris, série II-Sciences de la Terre, 303:16231626.Google Scholar
Saichuae, P., Gerson, U., and Henis, Y. 1972. Observations on the feeding and life history of the mite Nothrus viciliatus (Koch). Soil Biology and Biochemistry, 4:155164.CrossRefGoogle Scholar
Saiki, K., and Yoshida, Y. 1999. A new bennettitalean trunk with unilacunar five-trace nodal structure from the Upper Cretaceous of Hokkaido, Japan. American Journal of Botany, 86:326332.CrossRefGoogle ScholarPubMed
Scott, A. C., and Taylor, T. N. 1983. Plant/animal interactions during the Upper Carboniferous. Botanical Review, 49:259307.CrossRefGoogle Scholar
Seward, A. C. 1924. On a new species of Tempskya from Montana: Tempskya skoltoni, sp. nov. Annals of Botany, 38:485507.CrossRefGoogle Scholar
Sharma, B. D., and Harsh, R. 1989. Activities of phytophagous arthropods (wood borers) on extinct plants from the Mesozoic of the Rajmahal Hills, India. Bionature, 9(1):2934.Google Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. Nature, 351:283289.CrossRefGoogle Scholar
Shear, W. A., and Selden, P. A. 2001. Rustling in the undergrowth: Animals in early terrestrial ecosystems, p. 2951. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia University Press, New York.CrossRefGoogle Scholar
Shereef, G. M. 1971. Observations on the feeding, reproduction and faeces obtained from oribatids fed on different species of Penicillium and Aspergillus. Annales de Zoologie et Écologie Animale, Supplement (IV Colloquium Pédobiologie), 165176.Google Scholar
Siepel, H. 1994. Life-history tactics of soil microarthropods. Biology of Fertile Soils, 18:263278.CrossRefGoogle Scholar
Stanton, N. L. 1979. Patterns of species diversity in temperate and tropical litter mites. Ecology, 60:295304.CrossRefGoogle Scholar
Stubblefield, S. P., and Taylor, T. N. 1986. Wood decay in silicified gymnosperms from Antarctica. Botanical Gazette, 147:116125.CrossRefGoogle Scholar
Taylor, E. L., Taylor, T. N., and Collinson, J. W. 1989. Depositional setting and paleobotany of Permian and Triassic permineralized peat from the central Transantarctic Mountains, Antarctica. International Journal of Coal Geology, 12:657679.CrossRefGoogle Scholar
Taylor, E. L., Taylor, T. N., and Cúneo, N. R. 2000. Permian and Triassic high latitude paleoclimates: evidence from fossil biotas, p. 321350. In Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.), Warm Climates in Earth History. Cambridge University Press, Cambridge, U.K.Google Scholar
Tidwell, W. D., and Ash, S. R. 1990. On the Upper Jurassic stem Hermanophyton and its species from Colorado and Utah, USA. Palaeontographica, Abt. B, 128:7792.Google Scholar
Tidwell, W. D., and Rozefelds, A. C. 1991. Yulebacaulis normanii gen. et. sp. nov., a new fossil tree fern from southeastern Queensland, Australia. Australian Systematic Botany, 4:421432.CrossRefGoogle Scholar
Tomescu, A. M. F., Rothwell, G. W., and Mapes, G. 2001. Lyginopteris royalii sp. nov. from the Upper Mississippian of North America. Review of Palaeobotany and Palynology, 116:159173.CrossRefGoogle Scholar
Walker, M. V. 1938. Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proceedings of the United States National Museum, 85:137141.CrossRefGoogle Scholar
Wallwork, J. A. 1967. Acari, p. 363395. In Burges, A. and Raw, F. (eds.), Soil Biology. Academic Press, London.Google Scholar
Wallwork, J. A. 1976. The Distribution and Diversity of Soil Fauna. Academic Press, London, p. 243273.Google Scholar
Weaver, L., McLoughlin, S., and Drinnan, A. N. 1997. Fossil woods from the Upper Permian Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica. Journal of Australian Geology and Geophysics, 16:655676.Google Scholar
Yao, X., Taylor, T. N., and Taylor, E. L. 1991. Silicified dipterid ferns from the Jurassic of Antarctica. Review of Palaeobotany and Palynology, 67:353362.CrossRefGoogle Scholar
Zavada, M. S., and Mentis, M. T. 1992. Plant-animal interaction: The effect of Permian megaherbivores on the glossopterid flora. American Midland Naturalist, 127:12.CrossRefGoogle Scholar
Zhou, A., and Zhang, B. 1989. Sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Paleobotany and Palynology, 59:133143.Google Scholar