Skip to main content Accessibility help

The first report of a vauxiid sponge from the Cambrian Chengjiang Biota

  • Cui Luo (a1), Fangchen Zhao (a2) and Han Zeng (a2) (a3)


Non-spicular sponges constitute >8% of the extant sponge biodiversity at the species level, yet their evolutionary history is poorly known due to a sparse fossil record. The genus Vauxia, previously only known from middle Cambrian (Miaolingian, Wuliuan) Lagerstätten, was regarded as the earliest fossil record of non-spicular demosponges. Here we describe the first vauxiid sponge, Vauxia leioia new species, from the early Cambrian Chengjiang Biota (Series 2, Stage 3). This sponge exhibits a double-layered fibrous skeleton: the mesh and fiber thickness of the endosomal layer are irregular while the dermal layer, which directly connects with the endosomal skeleton without intermediate supporting fibers, is regular in both aspects. Measurements using scanning electron microscope and Raman spectroscopy revealed that the endosomal fibers are composed of carbonaceous material, but are tomographically indiscernible from the host rock, while the dermal fibers are preserved as impressions without obvious accumulation of carbonaceous material. Although the original composition of the dermal skeleton is now hard to establish, we cannot rule out that it was siliceous. The morphological characters of V. leioia n. sp. represent an intermediate state between other Vauxia species and the recently established vauxiid genus Angulosuspongia. However, more data are required to reconstruct the phylogenetic relationship among these taxa.




Hide All
Bergquist, P.R., 1978, Sponges: Berkeley and Los Angeles, University of California Press, 268 p.
Botting, J.P., and Muir, L.A., 2018, Early sponge evolution: a review and phylogenetic framework: Palaeoworld, v. 27, p. 129.
Botting, J.P., Muir, L.A., and Lin, J.P., 2013, Relationships of the Cambrian Protomonaxonida (Porifera): Palaeontologia Electronica, no. 16.2.9A, doi:10.26879/339.
Botting, J.P., Cárdenas, P., and Peel, J.S., 2014, A crown-group demosponge from the early Cambrian Sirius Passet Biota, North Greenland: Palaeontology, v. 58, p. 3543.
Domingos, C., Lage, A., and Muricy, G., 2016, Overview of the biodiversity and distribution of the class Homoscleromorpha in the tropical western Atlantic: Journal of the Marine Biological Association of the United Kingdom, v. 96, p. 379389.
Ehrlich, H., Maldonado, M., Spindler, K., Eckert, C., Hanke, T., Born, R., Goebel, C., Simon, P., Heinemann, S., and Worch, H., 2007, First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera): Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, v. 308, p. 347356.
Ehrlich, H., Simon, P., Carrillo-Cabrera, W., Bazhenov, V.V., Botting, J.P., Ilan, M., Ereskovsky, A.V., Muricy, G., Worch, H., Mensch, A., Born, R., Springer, A., Kummer, K., Vyalikh, D.V., Molodtsov, S.L., Kurek, D., Kammer, M., Paasch, S., and Brunner, E., 2010, Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges: Chemistry of Materials, v. 22, p.14621471.
Ehrlich, H., Rigby, J.K., Botting, J.P., Tsurkan, M.V., Werner, C., Schwille, P., Petrášek, Z., Pisera, A., Simon, P., Sivkov, V.N., Vyalikh, D.V., Molodtsov, S.L., Kurek, D., Kammer, M., Hunoldt, S., Born, R., Stawski, D., Steinhof, A., Bazhenov, V.V., and Geisler, T., 2013, Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta: Scientific Reports, v. 3, no. 3497, doi:10.1038/srep03497.
Finks, R.M., 1960, Late Paleozoic sponge faunas of the Texas region. The siliceous Sponges: Bulletin of the American Museum of Natural History, v. 120, p. 1160.
Forchielli, A., Steiner, M., Hu, S.X., and Keupp, H., 2012, Taphonomy of Cambrian (Stage 3/4) sponges from Yunnan (South China): Bulletin of Geosciences, v. 87, p. 133142.
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L., Vardanyan, S., Peckmann, J., Reitner, J., and Heindel, K., 2018, Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 490, p. 653672.
Gazave, E., Lavrov, D.V., Cabrol, J., Renard, E., Rocher, C., Vacelet, J., Adamska, M., Borchiellini, C., and Ereskovsky, A.V., 2013, Systematics and molecular phylogeny of the family Oscarellidae (Homoscleromorpha) with description of two new Oscarella species: Plos One, v. 8, no. e63976, doi:10.1371/journal.pone.0063976.
Gross, J., Sokal, Z., and Rougvie, M., 1956, Structural and chemical studies on the connective tissue of marine sponges: Journal of Histochemistry & Cytochemistry, v. 4, p. 227246.
de Laubenfels, M.W., 1955, Porifera, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera: New York and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. E21E122.
Lee, J.-H., Chen, J., and Chough, S.K., 2015, The middle–late Cambrian reef transition and related geological events: a review and new view: Earth-Science Reviews, v. 145, p. 6684.
Luo, C., 2015, “Keratose” sponge fossils and microbialites: a geobiological contribution to the understanding of metazoan origin [Ph.D. dissertation]: Göttingen, University of Göttingen, 151 p.
Luo, C., and Reitner, J., 2014, First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction: Naturwissenschaften, v. 101, p. 467477.
Luo, C., and Reitner, J., 2016, “Stromatolites” built by sponges and microbes—a new type of Phanerozoic bioconstruction: Lethaia, v. 49, p. 555570.
Maldonado, M., 2009, Embryonic development of verongid demosponges supports the independent acquisition of spongin skeletons as an alternative to the siliceous skeleton of sponges: Biological Journal of the Linnean Society, v. 97, p. 427447.
Morrow, C., and Cárdenas, P., 2015, Proposal for a revised classification of the Demospongiae (Porifera): Frontiers in Zoology, v. 12, no. 7, doi:10.1186/s12983-015-0099-8.
Park, J., Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2015, An Upper Ordovician sponge-bearing micritic limestone and implication for early Palaeozoic carbonate successions: Sedimentary Geology, v. 319, p. 124133.
Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Quéinnec, E., Da Silva, C., Wincker, P., Le Guyader, H., Leys, S., Jackson, D.J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Wörheide, G., and Manuel, M., 2009, Phylogenomics revives traditional views on deep animal relationships: Current Biology, v. 19, p. 706712.
Rigby, J.K., 1980, The new Middle Cambrian sponge Vauxia magna from the Spence Shale of northern Utah and taxonomic position of the Vauxiidae: Journal of Paleontology, v. 54, p. 234240.
Rigby, J.K., 1986, Sponges of the Burgess Shale (Middle Cambrian), British Columbia: Toronto, University of Toronto Press, 105 p.
Rigby, J.K., and Collins, D., 2004, Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia: Toronto, Royal Ontario Museum, 155 p.
Sollas, W.J., 1885, A classification of the sponges: Annals of Natural History (Series 5), v. 16, 395 p.
Szatkowski, T., and Jesionowski, T., 2017, Hydrothermal synthesis of spongin-based materials, in Ehrlich, H., ed., Extreme Biomimetics: Cham, Springer International Publishing, p. 251274.
van Soest, R.W.M, Boury-Esnault, N., Hooper, J.N.A., Rützler, K., de Voogd, N.J., Alvarez, B., Hajdu, E., Pisera, A.B., Manconi, R., Schönberg, C., Klautau, M., Picton, B., Kelly, M., Vacelet, J., Dohrmann, M., Díaz, M.-C., Cárdenas, P., Carballo, J. L., Ríos, P., Downey, R., 2018, World Porifera Database. [Sept. 2018].
Walcott, C.D., 1920, Cambrian geology and paleontology IV, No.6 Middle Cambrian Spongiae: Washington, D.C., Smithsonian Institution, 363 p.
Wang, H., Zhang, Z., Holmer, L.E., Hu, S., Wang, X., and Li, G., 2012, Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: implications for the ecological expansion of brachiopods during the Cambrian explosion: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 323–325, p. 6067.
Wood, R.A., 2011, Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization: Earth-Science Reviews, v. 106, p. 184190.
Wysokowski, M., Petrenko, I., Stelling, A. L., Stawski, D., Jesionowski, T., and Ehrlich, H., 2015, Poriferan chitin as a versatile template for extreme biomimetics: Polymers, v. 7, p. 235265.
Yang, C., Li, X.-H., Zhu, M., Condon, D.J., and Chen, J., 2018, Geochronological constraint on the Cambrian Chengjiang biota, South China: Journal of the Geological Society, doi:10.1144/jgs2017-103.
Yang, X., Zhao, Y., Babcock, L.E., and Peng, J., 2017a, A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China: Geological Magazine, v. 154, p. 13341343.
Yang, X.L., Zhao, Y.L., Babcock, L.E., and Peng, J., 2017b, Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota (Cambrian Stage 5), Guizhou, South China. Scientific Reports, v. 7, no. 42945, doi:10.1038/srep42945.
Zhao, F., Hu, S., Caron, J.-B., Zhu, M., Yin, Z., and Lu, M., 2012, Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 346–347, p. 5465.

The first report of a vauxiid sponge from the Cambrian Chengjiang Biota

  • Cui Luo (a1), Fangchen Zhao (a2) and Han Zeng (a2) (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed