Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T22:09:53.078Z Has data issue: false hasContentIssue false

Morphologic variation in Manicina areolata (Cnidaria, Scleractinia) from the Pleistocene of South Florida

Published online by Cambridge University Press:  11 August 2017

James E. Sorauf
Affiliation:
Department of Geology, University of South Florida, 4202 E. Fowler Ave., SCA 528, Tampa, FL 33620–5201, ,
Peter J. Harries
Affiliation:
Department of Geology, University of South Florida, 4202 E. Fowler Ave., SCA 528, Tampa, FL 33620–5201, ,

Abstract

Environmental variability exerts a substantial control on massive, free-living, colonial corals such as Manicina areolata, influencing their shape and size as well as other characters, such as base morphology and colline complexity in meandroid forms. This species is well adapted for life in shallow, wave-swept waters due to its self-righting capabilities. Two different ecophenotypes of M. areolata, as defined by overall shape and base morphology, are present in two approximately coeval Pleistocene localities (PBA Quarry and Holey Land Canal) in southern Florida. These differences reflect adaptation to two depositional settings. Corallum size, shape, and oral complexity allow clear differentiation between these two environments. Greater corallum size, as primarily manifested by significantly greater height, tends to accompany increased grain size. The basal area and weight per cm2 of the coralla appear to be primary limiting factors in M. areolata's growth by controlling the coral's ability to self-right after overturning or causing sinking into less cohesive substrates. Complexity of confluent corallites increases with increasing size and colony volume. Thus, complexity of valley and colline patterns on the oral surface increases as a function of base area, so that collines developed on smaller, soft-substrate-inhabiting colonies are characteristically less complex than are those of larger, higher colonies. These complexities and variation in shape are apparently related to environmental conditions, predominantly substrate, water depth, and physical energy, resulting in recognizable ecophenotypes.

Type
Research Article
Copyright
Copyright © 2010, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, D. J. 1972. The structure and formation of growth-ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London, Series B, 182: 331350.Google Scholar
Blainville, H. M. De. 1830. Zoophytes, p. 274364. In Defrance, J. L. M. (ed.), Dictionnaire des Sciences Naturelles, 60. F. G. Levrault, Paris.Google Scholar
Boschma, H. 1929. On the postlarval development of the coral Maeandra areolata (L.). Papers, Tortugas Laboratory, 26: 129147.Google Scholar
Budd, A. F. 1993. Variation within and among morphospecies of Montastraea . Courier Forschungsinstitut Senckenberg, 164: 241254.Google Scholar
Budd, A. F. and Johnson, K. G. 1999. Neogene Paleontology in the Northern Dominican Republic. The Family Faviidae (Anthozoa: Scleractinia). Part II. The genera Caulastraea, Favia, Diploria, Thysanus, Hadrophyllia, Manicina, and Colpophyllia. Bulletins of American Paleontology, 356: 183.Google Scholar
Duerden, J. E. 1902. Aggregated colonies in madreporarian corals. The American Naturalist, 36: 461471.Google Scholar
Dubar, J. R. 1974. Summary of the Neogene stratigraphy of southern Florida, p. 206231. In Oaks, R. Q. Jr., and Dubar, J. R. (eds.), Post-Miocene Stratigraphy Central and Southern Atlantic Coastal Plain. Utah State University Press, Logan.Google Scholar
Ehrenberg, G. G. 1834. Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen und besonders des Rothen Meeres. Kaiserliche Akademie der Wissenschaften Berlin, Abhandlungen 1832: 250380.Google Scholar
Ellis, J., and Solander, D. C. 1786. The Natural History of Many Curious and Uncommon Zoophytes Collected From Various Parts of the Globe. Benjamin White and Son, London, 208 p.CrossRefGoogle Scholar
Fabricius, F. 1964. Aktive Lage- und Ortsveränderung bei der Koloniekoralle Manicina areolata und ihre paläoökologische Bedeutung. Senckenbergiana Lethaea, 45: 299323.Google Scholar
Goreau, T. F. and Goreau, N. L. 1960. The physiology of skeleton formation in corals. III. Calcification rate as a function of colony weight and total nitrogen content in the reef coral Manicina areolata (Linnaeus). Biological Bulletin, 118: 419429.CrossRefGoogle Scholar
Gmelin, J. F. 1791. Tome I, Pars VI (Vermes), 2 + p. 30213910. In Linnaeus, C. A. and Gmelin, J. F., 1788–1793 (deuxième impression 1789–1796), Caroli A Linné, Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Editio Decima Tertia, aucta, reformata. Crura Jo. Frid. Gmelin. 3 Volumes. Impensis Georg. Emanuel Beer, Lipsiae; deuxième impression J. B. Delamollière, Lugduni.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 9.Google Scholar
Harries, P. J. and Sorauf, J. E. In press. Epi- and endobionts on and in free-living colonies of Manicina areolata (Cnidaria, Scleractinia): A comparison of two Pleistocene communities from South Florida. Palaios.Google Scholar
Hubmann, B., Piller, W. E., and Riegl, B. 2002. Functional morphology of coral shape and passive hydrodynamic self-righting in Recent Manicina areolata . Senckenbergiana Lethaea, 82: 125130.CrossRefGoogle Scholar
Johnson, K. G. 1988. Size, meander pattern, and behavior in the Caribbean free-living meandroid coral Manicina areolata (Linnaeus). Proceedings of the 6th International Coral Reef Symposium, Australia, 3: 403408.Google Scholar
Johnson, K. G. 1992a. Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. Journal of Experimental Marine Biology and Ecology, 164: 171191.Google Scholar
Johnson, K. G. 1992b. Synchronous planulation of Manicina areolata (Scleractinia) with lunar periodicity. Marine Ecology Progress Series, 87: 265273.CrossRefGoogle Scholar
Köning, C, 1805. Addition to M. Cavolini's these Zosteria oceanic L. Annals of Botany, 2: 9199.Google Scholar
Leymerie, M. A. 1841. Mémoire sur le terrain Crétacé du département de l'Aube contenant des considerations génerales sur le terrain Néocomien. Meoires de la Société géologique de France, 4: 291364.Google Scholar
Link, H. T. 1807, Beschreibung der Naturalien Sammlungen der Universität zu Rostock, pt. 3: 161165.Google Scholar
Linnaeus, C. 1758. Systema Naturae per regnia tria naturae, secundum Classes, Ordines, Genera, Species. Tomus I. Regnum Animale. Holmiae, Editio Decima, Reformata, 824 p.CrossRefGoogle Scholar
Lyons, W. G. 1991. Post-Miocene species of Latirus Montfort, 1810 (Mollusca: Fasciolariidae) of southern Florida, with a review of regional marine biostratigraphy. Bulletin of the Florida Museum of Natural History, 35: 131208.Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic Record of Global Sea-Level Change, Science, 310: 12931298.CrossRefGoogle ScholarPubMed
Milne-Edwards, H. and Haime, J. 1848. Note sur la classification de la deuxième tribu de la famille des astréides. Comptes Rendus de l'Académie des Sciences, 27: 490497.Google Scholar
Neves, E. G., Andrade, S. C. S., de Silveira, F. L., and Solferini, V. N. 2008. Genetic variation and population structuring in two brooding coral species (Siderastrea stellata and Siderastrea radians) from Brazil. Genetica, 132: 243254.CrossRefGoogle ScholarPubMed
d'Orbigny, A. 1842–1853. Mollusques, p. 225380. In de la Sagra, R. (ed.), Histoire Physique, Politique, et Naturelle de l'Ile de Cuba, Volume 2.Google Scholar
Petuch, E. J. and Roberts, C. E. 2008. The Geology of the Everglades and Adjacent Areas. CRC Press, Boca Raton, Florida, 212 p.Google Scholar
Robblee, M. B., Barber, T. R., Carlson, P. R. Jr., Durako, M. J., Fourqurean, J. W., Muehlstein, L. K., Porter, D., Yarbro, L. A., Zieman, R. T., and Zieman, J. C. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series, 71: 297299.CrossRefGoogle Scholar
Ruiz-Zárate, M. A., Espinoze-Avalos, J., Carricart-Ganivet, J. P., and Fragoso, D. 2000. Relationships between Manicina areolata (Cnidaria: Scleractinia), Thalassia testudinum (Anthophyta) and Neogoniolithon sp. (Rhodophyta). Marine Ecology Progress Series, 206: 135146.CrossRefGoogle Scholar
Sorauf, J. E. and Harries, P. J. 2009. Rotatory colonies of the corals Siderastrea radians and Solenoastraea spp. (Cnidaria, Scleractinia), from the Pleistocene Bermont Formation, South Florida, USA. Palaeontology, 52: 111126.CrossRefGoogle Scholar
Squires, D. F. 1958. Stony corals from the vicinity of Bimini, Bahamas, British West Indies. Bulletin of the American Museum of Natural History, 115: 217262.Google Scholar
Uhrin, A. V., Slade, C. L., and Holmquist, J. G. 2005. Self righting in the free-living coral Manicina areolata (Cnidaria: Scleractinia): Morphological constraints. Caribbean Journal of Science, 41: 277282.Google Scholar
Underwood, J. N., Smith, L. D., van Oppen, M. J. H., and Gilmour, J. P., 2007. Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Molecular Ecology, 16: 771784.Google Scholar
Vaughan, T. W. 1913. Studies of the geology and of the Madreporaria of the Bahamas and of southern Florida. Carnegie Institution of Washington, Year Book No. 11: 1153.Google Scholar
Vaughan, T. W. and Wells, J. W. 1943. Revision of the Suborders, Families, and Genera of the Scleractinia. Geological Society of America, Special Paper, 44: 1363.CrossRefGoogle Scholar
Veron, J. E. N. 2000. Corals of the World, Volume 3. Australian Institute of Marine Science, Townsville, Australia, 490 p.Google Scholar
Verrill, A. E. 1901. Variations and nomenclature of Bermudian, West Indian and Brazilian reef corals, with notes on various Indo-Pacific corals. Transactions of the Connecticut Academy of Arts and Sciences, 11: 163.Google Scholar
Weisbord, N. E. 1968. Some late Cenozoic stony corals from northern Venezuela. Bulletins of American Paleontology, 246: 1288.Google Scholar
Weisbord, N. E. 1974. Late Cenozoic corals of South Florida. Bulletins of American Paleontology, 285: 1544.Google Scholar
Wells, J. W. 1956. Scleractinia, F328-F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelenterata, 498 p.Google Scholar
Yonge, C. M. 1930. Studies on the physiology of corals, I. Feeding mechanisms and food. Great Barrier Reef Expedition, 1928–1929, Scientific Reports. British Museum (Natural History), 1: 257.Google Scholar
Yonge, C. M. 1935. Studies on the biology of Tortugas corals: 1. Observations on Meandra areolata Linnnaeus. Carnegie Institute of Washington, Papers of the Tortugas Laboratory, 29: 187198.Google Scholar
Zlatarski, V. N. and Estalella, N. M. 1982. Les Scléractiniaires de Cuba, avec des données sur les organisms associés. Bulgarian Academy of Sciences, Sofia, 472 p.Google Scholar