Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-17T00:20:47.261Z Has data issue: false hasContentIssue false

New artiopodan arthropods from the early Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia

Published online by Cambridge University Press:  20 May 2016

John R. Paterson
Affiliation:
Division of Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia,
Diego C. García-Bellido
Affiliation:
Departamento de Geología Sedimentaria y Cambio Ambiental, Instituto de Geociencias (CSIC-UCM), José Antonio Novais 2, 28040-Madrid, Spain,
Gregory D. Edgecombe
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.,

Abstract

The Emu Bay Shale Konservat-Lagerstätte (Cambrian Series 2, Stage 4) on Kangaroo Island, South Australia, is the source of two new non-biomineralized artiopodan arthropods. Squamacula buckorum n. sp. is the first record outside of China of a genus otherwise known only from its type species, S. clypeata, from the Chengjiang biota. The Australian species displays the long cephalic doublure and spiniform exopod setae that are apomorphic for this genus, provides new information on the alimentary tract and midgut glands (the latter preserved as three-dimensional, permineralized structures), and indicates interspecific variability in trunk segment numbers. The distribution of Squamacula strengthens the biogeographic connections between early Cambrian “Burgess Shale-type” biotas of Australia and South China. Australimicola spriggi n. gen. n. sp. represents a monotypic genus resolved in a cladistic analysis of Cambro-Ordovician artiopodans as most closely related to or within Conciliterga (a clade containing Helmetia, Kuamaia, Kwanyinaspis, Rhombicalvaria, Saperion, Skioldia, and Tegopelte). Compared with other members of this clade from Chengjiang and the Burgess Shale, the new genus is diagnosed by an elongate trunk with 23 thoracic tergites having spatulate pleural tips and a small pygidium possessing a single, elongate pair of pleural spines, with specimens also showing a hypostome attached to an anterior (or prehypostomal) sclerite, antennae, short endopods, an annulated alimentary tract, and a series of three-dimensional, permineralized midgut glands. An alternative relationship between Australimicola and the Early Ordovician–Early Devonian Cheloniellida explains the shared anterior flexure of trunk pleurae but forces dubious homologies in other characters, such as dorsally-articulated furcae versus spines.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessandrello, A. and Bracchi, G. 2006. Late Ordovician arachnomorph arthropods from the Anti-Atlas (Morocco). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 147:305315.Google Scholar
Babcock, L. E. and Peel, J. S. 2007. Palaeobiology, taphonomy and stratigraphic significance of the trilobite Buenellus from the Sirius Passet Biota, Cambrian of North Greenland. Memoirs of the Association of Australasian Palaeontologists, 34:401418.Google Scholar
Barrande, J. 1872. Système silurien du centre de la Bohème, 1ère partie. Recherches paléontologiques. Supplement au Vol. 1. Trilobites, crustacés divers et poisons. Prague, Paris.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists, 9:1364.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10:295304.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington D.C., 238 p.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L., and Jarrad, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology, 82:238254.Google Scholar
Broili, F. 1932. Ein neuer Crustacee aus dem rheinischen Unterdevon. Sitzungsberichte der bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Abteilung, 1932:2738.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society, London, B, 295:619653.Google Scholar
Budd, G. E. 1998. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, p. 125138. InFortey, R. A. and Thomas, R. H.(eds.), Arthropod Relationships. The Systematics Association Special Volume, Series 55, Chapman and Hall, London.Google Scholar
Budd, G. E. 2011. Campanamuta mantonae gen. et sp. nov., an exceptionally preserved arthropod from the Sirius Passet Fauna (Buen Formation, lower Cambrian, North Greenland). Journal of Systematic Palaeontology, 9:217260.CrossRefGoogle Scholar
Budd, G. E. and Daley, A. C. 2012. The lobes and lobopods of Opabinia regalis from the middle Cambrian Burgess Shale. Lethaia, 45:8395.Google Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.Google Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.Google Scholar
Caron, J-B. and Jackson, D. A. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:222256.Google Scholar
Caster, K. E. and Macke, W. B. 1952. An aglaspid merostome from the Upper Ordovician of Ohio. Journal of Paleontology, 26:753757.Google Scholar
Chen, J., Zhou, G., Zhu, M., and Yeh, K. 1996. The Chengjiang Biota—A Unique Window of the Cambrian Explosion. The National Museum of Natural Science, Taichung, 222 p.Google Scholar
Chlupač, I. 1988. The enigmatic arthropod Duslia from the Ordovician of Czechoslovakia. Palaeontology, 31:611620.Google Scholar
Conway Morris, S., Peel, J. S., Higgins, A. K., Soper, N. J., and Davis, N. C. 1987. A Burgess Shale-like fauna from the Lower Cambrian of North Greenland. Nature, 326:181183.Google Scholar
Cotton, T. J. and Braddy, S. J. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94:169193.Google Scholar
Dornbos, S. Q. and Chen, J-Y. 2008. Community palaeoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:200212.Google Scholar
Dunlop, J. A. 2002. Arthropods from the Lower Devonian Severnaya Zemlya Formation of October Revolution Island (Russia). Geodiversitas, 24:349379.Google Scholar
Dunlop, J. A. and Selden, P. A. 1998. The early history and phylogeny of the chelicerates, p. 221235. InFortey, R. A. and Thomas, R. H.(eds.), Arthropod Relationships. The Systematics Association Special Volume, Series 55, Chapman and Hall, London.Google Scholar
Edgecombe, G. D. and Ramsköld, L. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology, 73:263287.Google Scholar
Edgecombe, G. D., García-Bellido, D. C., and Paterson, J. R. 2011. A new leanchoiliid megacheiran arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontologica Polonica, 56:385400.Google Scholar
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12:99124.Google Scholar
García-Bellido, D. C. and Collins, D. 2007. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology, 50:693709.Google Scholar
García-Bellido, D. C., Vannier, J., and Collins, D. 2009a. Soft-part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica, 54:699712.Google Scholar
García-Bellido, D. C., Paterson, J. R., Edgecombe, G. D., Jago, J. B., Gehling, J. G., and Lee, M. S. Y. 2009b. The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology, 52:12211241.Google Scholar
Gehling, J. G., Jago, J. B., Paterson, J. R., García-Bellido, D. C., and Edgecombe, G. D. 2011. The geological context of the Lower Cambrian (Series 2) Emu Bay Shale Lagerstätte and adjacent stratigraphic units, Kangaroo Island, South Australia. Australian Journal of Earth Sciences, 58:243257.Google Scholar
Goloboff, P. A. 1993. Estimating character weights during tree search. Cladistics, 9:8391.Google Scholar
Goloboff, P. A., Farris, J. S., and Nixon, K. C. 2008a. TNT, a free program for phylogenetic analysis. Cladistics, 24:774786.Google Scholar
Goloboff, P. A., Carpenter, J. M., Arias, J. S., and Esquivel, D. F. M. 2008b. Weighting against homoplasy improves phylogenetic analysis of morphological datasets. Cladistics, 24:116.Google Scholar
Hendricks, J. R. and Lieberman, B. S. 2008. New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. Journal of Paleontology, 82:585594.Google Scholar
Hou, X. 1987. Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan. Acta Palaeontologica Sinica, 26:272285. (In Chinese)Google Scholar
Hou, X. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X., Chen, J., and Lu, H. 1989. Early Cambrian new arthropods from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:4257. (In Chinese)Google Scholar
Hou, X., Ramsköld, L., and Bergström, J. 1991. Composition and preservation of the Chengjiang fauna—a Lower Cambrian soft-bodied biota. Zoologica Scripta, 20:395411.Google Scholar
Hou, X., Bergström, J., Wang, H., Feng, X., and Chen, A. 1999. The Chengjiang Fauna—Exceptionally Well-Preserved Animals from 530 Million Years Ago. Yunnan Science and Technology Press, Kunming, 170 p. (In Chinese)Google Scholar
Hou, X., Aldridge, R. J., Bergström, J., Siveter, David J., Siveter, Derek J., and Feng, X. 2004. The Cambrian Fossils of Chengjiang, China—the Flowering of Early Animal Life. Blackwell Publishing, Oxford, 233.p.Google Scholar
Hu, S-X. 2005. Taphonomy and palaeoecology of the early Cambrian Chengjiang Biota from Eastern Yunnan, China. Berliner Paläobiologische Abhandlungen, 7:1197.Google Scholar
Hu, S-X., Zhu, M-Y., Steiner, M., Luo, H-L., Zhao, F-C., and Liu, Q. 2010. Biodiversity and taphonomy of the early Cambrian Guanshan biota, eastern Yunnan. Science China Earth Sciences, 53:17651773.Google Scholar
Hughes, N. C., Haug, J. T., and Waloszek, D. 2008. Basal euarthropod development: A fossil-based perspective, p. 281298. InMinelli, A. and Fusco, G.(eds.), Evolving Pathways: Key Themes in Evolutionary Developmental Biology. Cambridge University Press, Cambridge.Google Scholar
Ivantsov, A. Y. u. 1999. Trilobite-like arthropod from the Lower Cambrian of the Siberian Platform. Acta Palaeontologica Polonica, 44:455466.Google Scholar
Ivantsov, A. Yu., Zhuravlev, A. Yu., Leguta, A. V., Krassilov, V. A., Melnikova, L. M., and Ushatinskaya, G. T. 2005. Palaeoecology of the early Cambrian Sinsk biota from the Siberian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:6988.Google Scholar
Jago, J. B. and Cooper, B. J. 2011. The Emu Bay Shale Lagerstätte: A history of investigations. Australian Journal of Earth Sciences, 58:235241.Google Scholar
Jahn, J. J. 1893. Duslia, eine neue Chitonidengattung aus dem böhmischen Untersilur, nebst einige Bemerkungen über die Gattung Triopus Barr. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Classe, 102:591603.Google Scholar
Lagebro, L., Stein, M., and Peel, J. S. 2009. A new ?lamellipedian arthropod from the early Cambrian Sirius Passet fauna of North Greenland. Journal of Paleontology, 83:820825.Google Scholar
Lee, M. S. Y., Jago, J. B., García-Bellido, D. C., Edgecombe, G. D., Gehling, J. G., and Paterson, J. R. 2011. Modern optics in exceptionally preserved eyes of early Cambrian arthropods from Australia. Nature, 474:631634.Google Scholar
Li, S., Kang, C., and Zhang, X. 1990. Sedimentary environment and trilobites of Lower Cambrian Yuxiansi Formation in Leshan District, Sichuan. Bulletin of the Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geological Science, 12:3756. (In Chinese)Google Scholar
Lin, J., Ivantsov, A. Y., and Briggs, D. E. G. 2011. The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, 44:344349.Google Scholar
Luo, H., Hu, S., Chen, L., Zhang, S., and Tao, Y. 1999. Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science and Technology Press, Kunming, 129 p. (In Chinese)Google Scholar
Maas, A., Braun, A., Dong, X-P., Donoghue, P. C. J., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D. 2006. The ‘Orsten’—More than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15:266282.Google Scholar
McKirdy, D. M., Hall, P. A., Nedin, C., Halverson, G. P., Michaelsen, B. H., Jago, J. B., Gehling, J. G., and Jenkins, R. J. F. 2011. Paleoredox status and thermal alteration of the Lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences, 58:259272.Google Scholar
Nixon, K. C. 2002. WINCLADA. Version 1.99.08. Cornell University, Ithaca, New York.Google Scholar
Paterson, J. R. and Brock, G. A. 2007. Early Cambrian trilobites from Angorichina, Flinders Ranges, South Australia, with a new assemblage from the Pararaia bunyerooensis Zone. Journal of Paleontology, 81:116142.Google Scholar
Paterson, J. R., Edgecombe, G. D., García-Bellido, D. C., Jago, J. B., and Gehling, J. G. 2010. Nektaspid arthropods from the lower Cambrian Emu Bay Shale Lagerstätte, South Australia, with a reassessment of lamellipedian relationships. Palaeontology, 53:377402.Google Scholar
Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., and Edgecombe, G. D. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480:237240.Google Scholar
Paterson, J. R., Jago, J. B., Gehling, J. G., García-Bellido, D. C., Edgecombe, G. D., and Lee, M. S. Y. 2008. Early Cambrian arthropods from the Emu Bay Shale Lagerstätte, South Australia, p. 319325. InRábano, I., Gozalo, R., and García-Bellido, D.(eds.), Advances in Trilobite Research. Cuadernos del Museo Geominero, 9, Instituto Geológico y Minero de España, Madrid.Google Scholar
Peng, J., Zhao, Y., Wu, Y., Yuan, J., and Tai, T. 2005. The Balang Fauna—A new early Cambrian fauna from Kaili City, Guizhou Province. Chinese Science Bulletin, 50:14.Google Scholar
Ramsköld, L., Chen, J., Edgecombe, G. D., and Zhou, G. 1996. Preservational folds simulating tergite junctions in tegopeltid and naraoiid arthropods. Lethaia, 29:1520.Google Scholar
Ramsköld, L., Chen, J., Edgecombe, G. D., and Zhou, G. 1997. Cindarella and the arachnate clade Xandarellida (Arthropoda, early Cambrian) from China. Transactions of the Royal Society of Edinburgh: Earth Sciences, 88:1938.Google Scholar
Selden, P. A. and White, D. E. 1983. A new Silurian arthropod from Lesmahagow, Scotland. Special Papers in Palaeontology, 30:4349.Google Scholar
Simonetta, A. M. and Delle Cave, L. 1975. The Cambrian non-trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69:137.Google Scholar
Skovsted, C. B., Brock, G. A., and Paterson, J. R. 2006. Bivalved arthropods from the Lower Cambrian Mernmerna Formation, Arrowie Basin, South Australia and their implications for identification of Cambrian ‘small shelly fossils’. Memoirs of the Association of Australasian Palaeontologists, 32:741.Google Scholar
Stein, M. 2010. A new arthropod from the early Cambrian of North Greenland, with a ‘great appendage’-like antennula. Zoological Journal of the Linnean Society, 158:477500.Google Scholar
Stein, M. and Selden, P. A. 2012. A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. Journal of Systematic Palaeontology, in press.Google Scholar
Stürmer, W. and Bergström, J. 1978. The arthropod Cheloniellon from the Devonian Hunsrück Shale. Paläontologische Zeitschrift, 52:5781.Google Scholar
Topper, T. P., Skovsted, C. B., Brock, G. A., and Paterson, J. R. 2007. New bradoriids from the lower Cambrian Mernmerna Formation, South Australia: Systematics, biostratigraphy and biogeography. Memoirs of the Association of Australasian Palaeontologists, 33:67100.Google Scholar
Topper, T. P., Skovsted, C. B., Brock, G. A., and Paterson, J. R. 2011. The oldest bivalved arthropods from the early Cambrian of East Gondwana: Systematics, biostratigraphy and biogeography. Gondwana Research, 19:310326.Google Scholar
Van Roy, P. 2006. Non-trilobite arthropods from the Ordovician of Morocco. Ph.D. thesis, Ghent University, 230.p.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. Reports of the U.S. Geological Survey, 10:509763.Google Scholar
Walcott, C. D. 1911. Cambrian geology and paleontology. II. No. 2 - Middle Cambrian Merostomata. Smithsonian Miscellaneous Collections, 57:1740.Google Scholar
Walcott, C. D. 1912. Cambrian geology and paleontology. II. No. 6 - Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Smithsonian Miscellaneous Collections, 57:145229.Google Scholar
Walcott, C. D. 1918. Geological explorations in the Canadian Rockies. In Explorations and Fieldwork of the Smithsonian Institution in 1917. Smithsonian Miscellaneous Collections, 68:420.Google Scholar
Whittington, H. B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59:12511274.Google Scholar
Whittington, H. B. 1992. Trilobites. The Boydell Press, Woodbridge, 145.p.Google Scholar
Zhang, W. and Jell, P. A. 1987. Cambrian Trilobites of North China—Chinese Cambrian Trilobites Housed in the Smithsonian Institution. Science Press, Beijing, 459.p.Google Scholar
Zhang, W., Lu, Y., Zhu, Z., Qian, Y., Lin, H., Zhou, Z., Zhang, S., and Yuan, J. 1980. Cambrian trilobite faunas of southwestern China. Palaeontologica Sinica, 159:1497. (In Chinese)Google Scholar
Zhang, X. and Shu, D. 2005. A new arthropod from the Chengjiang Lagerstätte, early Cambrian, southern China. Alcheringa, 29:185194.Google Scholar
Zhang, X., Fu, D., and Dai, T. 2012. A new species of Kangacaris (Arthropoda) from the Chengjiang lagerstätte, lower Cambrian, southwest China. Alcheringa, 36:23–25.Google Scholar
Zhang, X., Han, J., and Shu, D. 2000. A new arthropod Pygmaclypeatus daziensis from the early Cambrian Chengjiang Lagerstätte, South China. Journal of Paleontology, 74:979983.Google Scholar
Zhang, X., Han, J., Zhang, Z., Liu, H., and Shu, D. 2004. Redescription of the Chengjiang arthropod Squamacula clypeata Hou and Bergström, from the Lower Cambrian, south-west China. Palaeontology, 47:605617.Google Scholar
Zhao, F., Zhu, M., and Hu, S. 2010. Community structure and composition of the Cambrian Chengjiang biota. Science China Earth Sciences, 53:17841799.Google Scholar
Zhao, F., Caron, J-B., Hu, S., and Zhu, M. 2009. Quantitative analysis of taphofacies and paleocommunities in the early Cambrian Chengjiang Lagerstätte. Palaios, 24:826839.Google Scholar
Zhao, Y., Zhu, M., Babcock, L. E., Yuan, J., Parsley, R. L., Peng, J., Yang, X., and Wang, Y. 2005. Kaili Biota: A taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geologica Sinica, 79:751765.Google Scholar