Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T06:51:01.664Z Has data issue: false hasContentIssue false

New fossil worms from the Lower Cambrian of the Kinzers Formation, Pennsylvania, with some comments on Burgess Shale-type preservation

Published online by Cambridge University Press:  20 May 2016

D. Garcia-Bellido Capdevila
Affiliation:
UEI de Paleontología, Facultad de Ciencias Geologicas, Universidad Complutense, 28040, Madrid, Spain
S. Conway Morris
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, U.K.

Abstract

Two new fossil worms are described from the Lower Cambrian Kinzers Formation of southeast Pennsylvania. Both are unique specimens. Kinzeria crinita new genus and species has a body divided into three regions. The head bears a prominent set of elongate tentacles, presumably employed for feeding. The elongate trunk tapers slightly in a posterior direction. It contains a prominent intestinal tract, the contents of which indicate a deposit feeding habit. The tail is an expanded structure, with either a spatulate or sagittate outline. The mode of life of K. crinita is uncertain, but the animal may have been semi-sedentary. Atalotaenia adela new genus and species is more poorly known, lacking the anterior. The preserved body is vermiform, with external annulations and a rounded posterior. There is a prominent internal strand, consisting of a probable intestine and an associated fibrous unit, possibly representing muscles. This worm may have been infaunal. These discoveries extend further our understanding of the ancient diversity of Laurentian Burgess Shale-type faunas. In common with the Burgess Shale itself and the Sirius Passet fauna (Peary Land, Greenland) the location of fossil-Lagerstätte [see Shields (1998) for a discussion of the terminology of Lagerstätten] of the Kinzers Formation adjacent to a prominent escarpment reinforces earlier evidence of the paleotopography exerting an important control on the distribution of Burgess Shale-type faunas. Whether this is a result of localized faunal abundances or taphonomic control is, however, uncertain.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrianov, A. V., and Malakhov, V. V. 1996. Priapulidy (Priapulida): Strenie, razvitie, filogennya i sistema. [Priapulida (Priapulida): structure, development, phylogeny, and classification]. KMK Scientific Press, Moscow, 266 p. (In Russian with English summary).Google Scholar
Aitken, J. D. and McIlreath, I. A. 1990. Comment. Geoscience Canada, 17:111116.Google Scholar
Blaker, M. R. and Peel, J. S. 1997. Lower Cambrian trilobites from North Greenland. Meddelelser om Gr⊘nland, Geoscience, 35:1145.Google Scholar
Briggs, D. E. G. 1976. The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. Geological Survey of Canada, Bulletin, 264:129.Google Scholar
Briggs, D. E. G. 1978. A new trilobite-like arthropod from the Lower Cambrian Kinzers Formation, Pennsylvania. Journal of Paleontology, 52:132140.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22:631664.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1992. The early Cambrian radiation of arthropods, p. 335373. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum, New York.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, 295:619656.Google Scholar
Butterfield, N. J. 1990. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology, 16:287303.Google Scholar
Butterfield, N. J. 1994. Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada. Nature, 369:477479.Google Scholar
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and “shelly” Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70:893899.Google Scholar
Campbell, L. D. 1969. Stratigraphy and paleontology of the Kinzers Formation, southeastern Pennsylvania. Unpublished , .Google Scholar
Campbell, L. D. 1971. Occurrence of “Ogygopsis Shale” fauna in southeastern Pennsylvania. Journal of Paleontology, 45:437440.Google Scholar
Campbell, L. D., and Kauffman, M. E. 1969. Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. Proceedings of the Pennsylvania Academy of Science, 43:172176.Google Scholar
Chen, J-Y, Cheng, Y.N., and Van Iten, H. (eds.). 1997. The Cambrian explosion and the fossil record. Bulletin of the National Museum of Natural Science, Taiwan, 10:1318.Google Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology, 20, 95p.Google Scholar
Conway Morris, S. 1979. Middle Cambrian polychaetes from the Burgess Shale of British Columbia. Philosophical Transactions of the Royal Society of London B, 285:227274.Google Scholar
Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society of London B, 307:507586.Google Scholar
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 80:271283.Google Scholar
Conway Morris, S. 1997. The cuticular structure of the 495-Myr-old type species of the fossil worm Palaeoscolex, P. piscatorum (?Priapulida). Zoological Journal of the Linnean Society, 119:6982.Google Scholar
Conway Morris, S. 1998. The Crucible of Creation. The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, 242 p.Google Scholar
Conway Morris, S., and Peel, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London B, 347:305358.Google Scholar
Conway Morris, S., and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, Paper, 122:148.Google Scholar
Conway Morris, S., Peel, J. S., Higgins, A. K., Soper, N. J., and Davis, N. C. 1987. A Burgess Shale-like fauna from the Lower Cambrian of North Greenland. Nature, 326:181183.Google Scholar
Derstler, K. 1981. Morphological diversity of early Cambrian echinoderms, In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey, Open-File Report, 81-743: 71-75.Google Scholar
Dunbar, C. O. 1925. Antennae in Olenellus getzi, n. sp. American Journal of Science, 9:303308.Google Scholar
de Freitas, T., and Mayr, U. 1995. Kilometer-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada: new insight on Lower Ordovician reef facies. Bulletin of the Canadian Association of Petroleum Geologists, 43:407432.Google Scholar
Fauchald, K. 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Science Series, 28:188.Google Scholar
Fritz, W. H. 1990. Comment: In defense of the Escarpment near the Burgess Shale fossil locality. Geoscience Canada, 17:106110.Google Scholar
Ludvigsen, R. 1989. The Burgess Shale: Not in the shadow of the Cathedral Escarpment. Geoscience Canada, 16:5159.Google Scholar
Ludvigsen, R. 1990. Reply to comments by Fritz and Aitken, and McIlreath. Geoscience Canada, 17:116118.Google Scholar
McIlreath, I. A. 1977. Accumulation of a Middle Cambrian, deep-water limestone debris apron adjacent to a vertical, submarine carbonate escarpment, southern Rocky Mountains, Canada. Society of Economic Paleontologists and Mineralogists, Special Publication, 25:113124.Google Scholar
Meyers, J. H. 1967. Clay mineralogy and illite polymorphism in the Lower Cambrian Kinzers Shale, Pennsylvania Piedmont. , , 76 p.Google Scholar
Müller, K. J., and Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36:217228.Google Scholar
Palmer, A. R. 1971. The Cambrian of the Appalachians and eastern New England region, p. 169217. In Holland, C. H. (ed.), Cambrian of the New World. Wiley-Interscience, London.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Review, 59:443481.Google Scholar
Peel, J. S., Conway Morris, S., and Ineson, J. R. 1992. A second glimpse of Early Cambrian life: new collections from Sirius Passet, North Greenland. Gr⊘nlands Geologiske Unders⊘gelse, Rapport, 155:4850.Google Scholar
Por, F. D. and Bromley, H. J. 1974. Morphology and anatomy of Maccabeus tentaculatus (Priapulida: Seticoronaria). Journal of Zoology, London, 173:173197.Google Scholar
Resser, C. E. and Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Geological Society of America Bulletin, 49:195248.Google Scholar
Rigby, J. K. 1987. Early Cambrian sponges from Vermont and Pennsylvania, the only ones described from North America. Journal of Paleontology, 61:451461.Google Scholar
Rodgers, J. 1968. The eastern edge of the North American continent during the Cambrian and early Ordovician, p. 141149. In Zen, E. A., Walter, W. S., Hadley, J. B., and Thompson, T. B. (eds.), Studies of Appalachian Geology: Northern and Maritime. Interscience, New York.Google Scholar
Ryan, J. E. 1986. New fossil locality in Lancaster County. Pennsylvania Geology, 17:1012.Google Scholar
Salvini-Plawen, L. V. 1974. Zur Morphologie und Systematik der Priapulida: Chaetostephanus praeposteriens, der Vertreter einer neuen Ordnung Seticoronaria. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 12:3154.Google Scholar
Scharnberger, C. K., (ed.). 1990. Guidebook for the 55th Annual Field Conference of Pennsylvania Geologists. Carbonates, schists, and geomorphology of the lower reaches of the Susquehanna River. Field Conference of Pennsylvania Geologists, Inc., Harrisburg.Google Scholar
Shields, G. 1998. What are Lagerstätten? Lethaia, 31:124Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Harvard University, Museum of Comparative Zoology Special Publication, Cambridge, MA, 283 p.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata, p. 375398. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Stose, A. J., and Stose, G. W. 1944. Geology of the Hanover-York district, Pennsylvania. U. S. Geology Survey Professional Paper 204:184.Google Scholar