Skip to main content
×
Home
    • Aa
    • Aa

New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms

  • Colin D. Sumrall (a1)
Abstract
Abstract

Universal elemental homology (UEH) underpins recent understanding of peristomial and ambulacral elemental homology of pentaradiate echinoderms by providing a uniform set of terminology to construct phylogenetic characters. Variation in the expression of these elements provides evidence for phylogenetic relationships. Two nonhomologous sets of plates border the peristome and are associated with two nonhomologous sets of floor plates forming the ambulacral food groove. Some edrioasteroid-grade and eocrinoid-grade echinoderms have ambulacral systems formed from oral frame plates and adradial floor plates, whereas most blastozoans and crinoids bear oral plates and abradial floor plates. These plates are expressed in a variety of ways among echinoderms, but nearly all can be reconciled with the underlying model. Arguments against UEH are methodologically flawed and confuse many terms and interpretations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      New insights concerning homology of the oral region and ambulacral system plating of pentaradial echinoderms
      Available formats
      ×
Copyright
References
Hide All
AusichW.I., 1998, Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata): Journal of Paleontology, v. 72, p. 499510.
AusichW.I., and KammerT.W., 2016, Exaptation of pelmatozoan oral surfaces: constructional pathways in tegmen evolution: Journal of Paleontology, v. 90, p. 689720.
AusichW.I., KammerT.W., RhenbergE.C., and WrightD.F., 2015, Early phylogeny of crinoids within the pelmatozoan clade: Palaeontology, v. 58, p. 937952.
BatherF.A., 1914, The edrioasters of the Trenton Limestone (Parts 1 and 2): Geological Magazine, Dec. 4, 5: p. 115125, 162–171.
BauerJ.E., SumrallC.D., and WatersJ.A., 2017, Hydrospire morphology and its implications for blastoid phylogenetic inference: Journal of Paleontology, doi: https://doi.org/10.1017/jpa.2017.2.
BellB.M., 1976, A Study of North American Edrioasteroidea: New York State Museum Memoir, 21, 446 p.
BlakeD.B., 1980, Post-Paleozoic Asterozoa, in Broadhead, T.W., and Waters J.A., eds., Echinoderms: Notes for a Short Course: Knoxville, University of Tennessee, Department of Geological Sciences, p. 200214.
BockelieJ.F., 1979, Taxonomy, functional morphology and paleoecology of the Ordovician cystoid family Hemicosmitidae: Palaeontology, v. 22, p. 363406.
BodenbenderB.E., and FisherD.C., 2001, Stratocladistic analysis of blastoid phylogeny: Journal of Paleontology, v. 75, p. 351369.
BransonE.B., and PeckR.E., 1940, A new cystoid from the Ordovician of Oklahoma: Journal of Paleontology, v. 14, p. 8992.
BrettC.E., FrestT.J., SprinkleJ., and ClementC.R., 1983, Coronoidea: a new class of blastozoan echinoderms based on a taxonomic reevaluation of Stephanocrinus : Journal of Paleontology, v. 57, p. 627651.
BroadheadT.W., and SumrallC.D., 2003, Heterochrony and paedomorphic development of Sprinkleocystis ektopios, new genus and species (Rhombifera, Glyptocystida) from the Middle Ordovician (Carodoc) of Tennessee: Journal of Paleontology, v. 77, p. 113120.
DavidB., and MooiR., 1998, Major events in the evolution of echinoderms viewed by the light of embryology, in Mooi, R., and Telford, M., eds., Echinoderms, San Francisco: Rotterdam, Balkema, p. 2128.
DavidB., LefebvreB., MooiR., and ParsleyR.L., 2000, Are homalozoans echinoderms? An answer from the extraxial-axial theory: Paleobiology, v. 26, p. 529555.
DonovanS.K., and PaulC.R.C., 1985, Coronate echinoderms from the lower Palaeozoic of Britain: Palaeontology, v. 28, p. 527543.
FoersteA.F., 1938, Echinodermata, in Resser, C.E., and Howell, B.F., eds., Lower Cambrian Olenellus zone of the Appalachians: Bulletin of the Geological Society of America, v. 49, p. 212–213.
FrestT.J., and StrimpleH.L., 1982, A new comarocystitid (Echinodermata: Paracrinoidea) from the Kimmswick Limestone (Middle Ordovician), Missouri: Journal of Paleontology, v. 56, p. 358370.
FrestT.J., StrimpleH.L., and PaulC.R.C., 2011, The North American Holocystites fauna (Echinodermata, Blastozoa: Diploporita): paleobiology and systematics: Bulletins of American Paleontology, v. 380, p. 141.
GuensburgT.E., and SprinkleJ., 2007, Phylogenetic implications of the Protocrinoidea: Blastozoans are not ancestral to crinoids: Annales de Paléontologie, v. 93, p. 277290.
GuensburgT.E., and SprinkleJ., 2009, Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development: Journal of Paleontology, v. 83, p. 350364.
GuensburgT.E., and SprinkleJ., 2010, Emended restoration of Titanocrinus sumralli Guensburg and Sprinkle, 2003 (Echinodermata, Crinoidea): Journal of Paleontology, v. 84, p. 566568.
GuensburgT.E., BlakeD.B., SprinkleJ., and MooiR., 2016, Crinoid ancestry without blastozoans: Acta Palaeontologica Polonica, v. 61, p. 253266.
JefferiesR.P.S., 1986, The Ancestry of the Vertebrates: London, British Museum (Natural History), 376 p.
KammerT.W., SumrallC.D., AusichW.I., DelineB., and ZamoraS., 2013, Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms: PLoS One, v. 8, e77989.
KeslingR.V., 1967, Cystoids, in Moore, R.C., ed., Treatise on Invertebrate Paleontology: New York and Lawrence, Geological Society of America and University of Kansas, p. s86262.
MeekF.B., 1871, On some new Silurian crinoids and shells: American Journal of Science, ser, 3, p. 295299.
MooiR., and DavidB., 1997, Skeletal homologies of echinoderms, in Waters, J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society papers, v. 3, p. 305–335.
MooiR., and DavidB., 1998, Evolution within a bizarre phylum: homologies of the first echinoderms: American Zoologist, v. 38, p. 965974.
MooiR., and DavidB., 2008, Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes: Annual Review of Ecology, Evolution, and Systematics, v. 39, p. 4362.
MooiR., DavidB., and MarchandD., 1994, Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, in David, B., Guille, A., Féral, J., and Roux, M., eds., Echinoderms Through Time: Rotterdam, A. A. Balkema, p. 8795.
MooiR., DavidB., and WrayG.A., 2005, Arrays in rays: terminal addition in echinoderms and its correlation with gene expression: Evolution and Development, v. 7, p. 542555.
OwenD.D., and ShumardB.F., 1850, Descriptions of fifteen new species of Crinoidea from the Subcarboniferous limestone of Iowa, Wisconsin and Minnesota in the years 1848–1849: Journal of the Academy of Natural Sciences of Philadelphia, ser. 2, v. 2, p. 8994.
ParsleyR.L., 1980, Homalozoa, in Broadhead, T.W., and Waters J.A., eds., Echinoderms: Notes for a Short Course: Knoxville, University of Tennessee, Department of Geological Sciences, p. 200214.
ParsleyR.L., 1982, Eumorphocystis, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monograph, v. 1, p. 106–117.
ParsleyR.L., and MintzL.W., 1975, North American Paracrinoidea: (Ordovician, Paracrinozoa, New, Echinodermata): Bulletins of American Paleontology, v. 68, p. 5115.
ParsleyR.L., and ZhaoY., 2006, Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China: Journal of Paleontology, v. 80, p. 10581071.
PattersonC., 1988, Homology in classical and molecular biology: molecular biology and evolution, v. 5, p. 603625.
PaulC.R., 1971, Revision of the Holocystites fauna (Diploporita) of North America: Fieldiana Geology, v. 24, p. 1166.
PaulC.R.C., 1988, The phylogeny of the cystoids, in Paul, C.R.C., and Smith, A.B., eds., Echinoderm Phylogeny and Evolution: Oxford, Clarendon Press, p. 199213.
PaulC.R.C., and SmithA.B., 1984, The early radiation and phylogeny of echinoderms: Biological Reviews, v. 59, p. 443481.
RoweT., 1988, Definition, diagnosis, and origin of Mammalia: Journal of Vertebrate Paleontology, v. 8, p. 241264.
SheffieldS.L., and SumrallC.D., 2015, A new interpretation of the oral plating patterns of the Holocystites fauna (Diploporita: Echinodermata), in Zamora, S., and Rábano, I., eds., Progress in Echinoderm Paleobiology: Cuadernos del Museo Geominero, 19: Madrid, Instituto Geológico y Minero de España, p. 159162.
SheffieldS.L., and SumrallC.D., 2017, A revision of the Holocystites (Diploporita: Echinodermata) fauna: Journal of Paleontology, doi: https://doi.org/10.1017/jpa.2016.159.
SmithA.B., 1984, Classification of the Echinodermata: Palaeontology, v. 27, p. 431459.
SmithA.B., 1990, Evolutionary diversification of echinoderms during the early Palaeozoic, in Taylor, P.D., and Larwood, G.P., eds., Systematics Association Special Volume 42: Oxford, Clarendon Press, p. 256286.
SprinkleJ., 1973, Morphology and Evolution of Blastozoan Echinoderms: Harvard University Museum of Comparative Zoology, Special Publication, 283 p.
SprinkleJ., 1975, The “arms” of Caryocrinites, a rhombiferan cystoid convergent on crinoids: Journal of Paleontology, v. 49, p. 10621073.
SprinkleJ., and ParsleyR.L., 1982, “Golf-ball” paracrinoids, in Sprinkle, J., ed., Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma: University of Kansas Paleontological Contributions, Monograph, 1, p. 224–230.
SprinkleJ., and SumrallC.D., 2008, New parablastoid taxa from North America: The University of Kansas Paleontological Contributions, v. 16, p. 114.
StummE.C., 1955, Three new species of the cystid genus Lipsanocystis from the Middle Devonian of the Traverse Group of Michigan: Contributions from the Museum of Paleontology, University of Michigan, v. 12, p. 97103.
SumrallC.D., 1996, Late Paleozoic edrioasteroids (Echinodermata) from the North American midcontinent: Journal of Paleontology, v. 70, p. 969985.
SumrallC.D., 1997, The role of fossils in the phylogenetic reconstruction of Echinodermata, in Waters, J.A., and Maples, C.G., eds., Geobiology of Echinoderms: Paleontological Society Papers, v. 3, p. 267–288.
SumrallC.D., 2008, The origin of Lovén’s Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border, in Ausich, W.I., and Webster, G.D., eds., Echinoderm Paleobiology: Bloomington, University of Indiana Press, p. 228241.
SumrallC.D., 2010, A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms, in Harris, L.G., Böttger, S.A., Walker, C.W., and Lesser, M.P., eds., Echinoderms: Durham: London, CRC Press, p. 269276.
SumrallC.D., 2015, Understanding the oral area of derived stemmed echinoderms, in Zamora, S., and Rábano, I., eds., Progress in Echinoderm Paleobiology: Cuadernos del Museo Geominero, 19: Madrid, Instituto Geológico y Minero de España, p. 169174.
SumrallC.D., and DelineB., 2009, A new species of the dual-mouthed paracrinoid Bistomiacystis and a redescription of the edrioasteroid Edrioaster priscus from the Middle Ordovician Curdsville Member of the Lexington Limestone: Journal of Paleontology, v. 83, p. 135139.
SumrallC.D., and ParsleyR.L., 2003, Morphology and biomechanical implications of isolated discocystinid plates (Edrioasteroidea, Echinodermata) from the Carboniferous of North America: Palaeontology, v. 46, p. 113138.
SumrallC.D., and WatersJ.A., 2012, Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived blastozoa: Journal of Paleontology, v. 86, p. 956972.
SumrallC.D., and WrayG.A., 2007, Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms: Paleobiology, v. 33, p. 149163.
SumrallC.D., and ZamoraS., 2011, Ordovician edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean: Journal of Systematic Palaeontology, v. 9, p. 425454.
SumrallC.D., SprinkleJ., and GuensburgT.E., 1997, Systematics and paleoecology of late Cambrian echinoderms from the western United States: Journal of Paleontology, v. 71, p. 10911109.
SumrallC.D., BrettC E., DexterT.A., and BartholomewA., 2009, An enigmatic blastozoan fauna from central Kentucky: Journal of Paleontology, v. 83, p. 739749.
UbaghsG., 1963, Rhopalocystis destombesi n. g., n. sp., éocrinoïde de 1494 l’Ordovicien inférieur (Trémadocien supérieur) du Sud marocain: Notes et 1495: Mémoires du Service géologique du Maroc, v. 172, p. 2545.
WannerJ., 1916, Die Permischen echinodermen von Timor, I. Teil: Palaontologie von Timor, v. 11, p. 1329.
WhiteavesJ.F., 1887, On some fossils from the Hamilton Formation of Ontario, with a list of the species present known from that formation and province: Contributions to Canadian Palaeontology, v. 1, p. 91125.
ZamoraS., and SmithA.B., 2011, Cambrian stalked echinoderms show unexpected plasticity of arm construction: Proceedings of the Royal Society of London B: Biological Sciences, v. 279, p. 293–298.
ZamoraS., and SmithA.B., 2012, Cambrian stalked echinoderms show unexpected plasticity of arm construction: Proceedings of the Royal Society of London, B, v. 279, p. 293–298.
ZamoraS., LefebvreB., ÁlvaroJ.J., ClausenS., ElickiO., FatkaO., JellP., KouchinskyA., LinJ.P., NardinE., ParsleyR., RozhnovS.V., SprinkleJ., SumrallC.D., VizcaïnoD., and SmithA.B., 2013a, Cambrian echinoderm diversity and palaeobiogeography: Geological Society, London, Memoirs, v. 38, p. 157171.
ZamoraS., SumrallC.D., and VizcaïnoD., 2013b, Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana: Acta Palaeontologica Polonica, v. 58, no. 3, p. 545559.
ZamoraS., LefebvreB., HosgörI., FranzenC., NardinE., FatkaO., and ÁlvaroJ.J., 2015, The Cambrian edrioasteroid Stromatocystites (Echinodermata): Systematics, palaeogeography, and palaeoecology: Geobios, v. 48, p. 417426.
ZhaoY., SumrallC.D., ParsleyR.L., and PengJ., 2010, Kailidiscus, a new plesiomorphic edrioasteroid from the basal middle Cambrian Kaili Biota of Guizhou Province, China: Journal of Paleontology, v. 84, p. 668680.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Paleontology
  • ISSN: 0022-3360
  • EISSN: 1937-2337
  • URL: /core/journals/journal-of-paleontology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 17
Total number of PDF views: 100 *
Loading metrics...

Abstract views

Total abstract views: 200 *
Loading metrics...

* Views captured on Cambridge Core between 10th May 2017 - 24th October 2017. This data will be updated every 24 hours.