Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T05:41:08.967Z Has data issue: false hasContentIssue false

New material of scalidophoran worms in Orsten-type preservation from the Cambrian Fortunian Stage of South China

Published online by Cambridge University Press:  14 August 2017

Huaqiao Zhang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 〈hqzhang@nigpas.ac.cn〉
Andreas Maas
Affiliation:
Galgenackerweg 25, 89134 Blaustein, Germany 〈maas.blaustein@freenet.de〉
Dieter Waloszek
Affiliation:
University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden 〈dieter@waloszek-d.de〉

Abstract

Scalidophoran worms diversified in the Cambrian Fortunian, as indicated by recent reports from this stage, with two described species and two more unnamed forms exclusively from Orsten-type Lagerstätten yielding three-dimensionally phosphatized fossils. Here, we report new material of scalidophoran worms in Orsten-type preservation from the Cambrian Fortunian Xinli section in northern Sichuan Province, South China. At least five forms of scalidophoran worms were recovered from this location, including Eokinorhynchus rarus Zhang et al., 2015 and four unnamed taxa—Forms A, B, C, and D. Co-occurring disassociated spinose small shelly fossils might also be isolated cuticular elements of these early scalidophoran worms. The ontogeny of Eokinorhynchus rarus is revised. Forms A, C, and D are assigned to total-group Scalidophora to indicate their uncertain positions within Scalidophora, while Form B might be a close relative of Eokinorhynchus rarus. The current work highlights the significance of Orsten-type Lagerstätten in uncovering the morphology, ontogeny, and taxonomy of early Scalidophora and Cycloneuralia, made particularly available by the new finds in China.

Type
Articles
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguinaldo, A.M.A., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., and Lake, J.A., 1997, Evidence for a clade of nematodes, arthropods and other moulting animals: Nature, v. 387, p. 489493.Google Scholar
Ahlrichs, W.H., 1995, Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876): Hypothesen zu phylogenetischen Verwandschaftsverhältnissen innerhalb der Bilateria: Göttingen, Cuvillier, 310 p.Google Scholar
Brusca, R.C., and Brusca, G.J., 2003, Invertebrates: Sunderland, Massachusetts, Sinauer Associates, 936 p.Google Scholar
Budd, G.E., 2001, Why are arthropods segmented?: Evolution & Development, v. 3, p. 332342.Google Scholar
Butterfield, N.J., 2003, Exceptional fossil preservation and the Cambrian Explosion: Integrative and Comparative Biology, v. 43, p. 166177.Google Scholar
Butterfield, N.J., Balthasar, U., and Wilson, L.A., 2007, Fossil diagenesis in the Burgess Shale: Palaeontology, v. 50, p. 537543.CrossRefGoogle Scholar
Chen, J., 2004, The Dawn of Animal World: Nanjing, Jiangsu Science and Technology Press, 366 p.Google Scholar
Cheng, G., Peng, F., Duan, B., and Dong, X.-P., 2011, Internal structure of Cambrian fossil embryo Markuelia revealed in the light of synchrotron radiation x-ray tomographic microscopy: Acta Geologica Sinica, v. 85, p. 8190.Google Scholar
Conway Morris, S., 1989, Burgess Shale faunas and the Cambrian Explosion: Science, v. 246, p. 339346.Google Scholar
Conway Morris, S., and Chen, M., 1991, Cambroclaves and paracarinachitids, early skeletal problematica from the lower Cambrian of South China: Palaeontology, v. 34, p. 357397.Google Scholar
Dong, X.-P., Donoghue, P.C.J., Cheng, H., and Liu, J.B., 2004, Fossil embryos from the middle and late Cambrian Period of Hunan, South China: Nature, v. 427, p. 237240.Google Scholar
Donoghue, P.C.J., and Purnell, M.A., 2009, Distinguishing heat from light in debate over controversial fossils: BioEssays, v. 31, p. 178189.Google Scholar
Duan, B., Dong, X.-P., and Donoghue, P.C.J., 2012, New palaeoscolecid worms from the Furongian (upper Cambrian) of Hunan, South China: Is Markuelia an embryonic palaeoscolecid?: Palaeontology, v. 55, p. 613622.Google Scholar
Gaines, R.R., Kennedy, M., and Droser, M., 2005, A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 220, p. 193205.Google Scholar
Gaines, R.R., Briggs, D.E.G., and Zhao, Y.L., 2008, Cambrian Burgess Shale-type deposits share a common mode of fossilization: Geology, v. 36, p. 755758.Google Scholar
Harvey, T.H.P., Dong, X.-P., and Donoghue, P.C.J., 2010, Are palaeoscolecids ancestral ecdysozoans?: Evolution & Development, v. 12, p. 177200.Google Scholar
Haug, J.T., Maas, A., Waloszek, D., Donoghue, P.C.J., and Bengtson, S., 2009, A new species of Markuelia from the middle Cambrian of Australia, in Paterson, J.R., and Laurie, J.R., eds., Cambro-Ordovician Studies III: Memoirs of the Association of Australasian Palaeontologists: Canberra, Association of Australasian Palaeontologists, v. 37, p. 303313.Google Scholar
He, T.G., and Xie, Y.S., 1989, Some problematic small shelly fossils from the Meishucunian of the lower Cambrian in the western Yangtze Region: Acta Micropalaeontologica Sinica, v. 6, p. 111127.Google Scholar
He, Y.X., and Yang, X.H., 1986, Early Cambrian coelenterates from Nanjiang, Sichuan: Bulletin of the Chengdu Institute of Geology and Mineral Resources, v. 7, p. 3143.Google Scholar
Lemburg, C., 1995, Ultrastructure of the introvert and associated structures of the larvae of Halicryptus spinulosus (Priapulida): Zoomorphology, v. 115, p. 1129.Google Scholar
Li, Z., 1984, The discovery and its significance of small shelly fossils in Hexi area, Xixiang, Shaanxi: Geology of Shaanxi, v. 2, p. 7377.Google Scholar
Liu, Y., Xiao, S., Shao, T., Broce, J., and Zhang, H., 2014, The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans: Evolution & Development, v. 16, p. 155165.CrossRefGoogle ScholarPubMed
Maas, A., Braun, A., Dong, X.-P., Donoghue, P.C.J., Müller, K.J., Olempska, E., Repetski, J.E., Siveter, D.J., Stein, M., and Waloszek, D., 2006, The ‘Orsten’—More than a Cambrian Konservat-Lagerstätte yielding exceptional preservation: Palaeoworld, v. 15, p. 266282.CrossRefGoogle Scholar
Maas, A., Waloszek, D., Haug, J.T., and Müller, K.J., 2007a, A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia: Memoirs of the Association of Australasian Palaeontologists, v. 34, p. 499519.Google Scholar
Maas, A., Huang, D., Chen, J., Waloszek, D., and Braun, A., 2007b, Maotianshan-Shale nemathelminths: Morphology, biology, and the phylogeny of Nemathelminthes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 288306.Google Scholar
Merriman, J.A., 1981, Cuticular structures of the priapulid Halicryptus spinulosus: A scanning electron microscopical study: Zoomorphology, v. 97, p. 285295.CrossRefGoogle Scholar
Missarzhevsky, V.V., 1973, Konodontoobraznye organizmy iz pogranichnykh sloev kembriya i dokembriya Sibirskoj platformy i Kazakhstana [Conodont-shaped organisms from Precambrian–Cambrian boundary strata of the Siberian Platform and Kazakhstan]: Trudy Instituta Geologii i Geofiziki SO AN SSSR, v. 49, p. 5357.Google Scholar
Missarzhevsky, V.V., 1974, Novye dannye o drevnejshikh okamenelostyakh rannego kembriya Sibirskoj platformy [New data on the oldest fossils of the early Cambrian of the Siberian Platform], in Zhuravleva, I.T., and Rozanov, A.Y., eds., Biostratigrafiya i paleontologiya nizhnego kembriya Evropy i severnoj zii [Biostratigraphy and Palaeontology of the Lower Cambrian of Europe and Northern Asia]: Moscow, Nauka, p. 179189.Google Scholar
Missarzhevsky, V.V., 1983, Stratigrafiya drevnejshikh tolshch fanerozoya Anabarskogo massiva [Stratigraphy of the oldest Phanerozoic strata of the Anabar Massif]: Sovetskaya Geologiya, v. 1983, p. 6273.Google Scholar
Müller, K.J., 1985, Exceptional preservation in calcareous nodules: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, v. 311, p. 6773.Google Scholar
Müller, K.J., and Hinz-Schallreuter, I., 1993, Palaeoscolecid worms from the middle Cambrian of Australia: Palaeontology, v. 36, p. 549592.Google Scholar
Müller, K.J., and Walossek, D., 1985, A remarkable arthropod fauna from the upper Cambrian ‘Orsten’ of Sweden: Transactions of the Royal Society of Edinburgh, v. 76, p. 161172.Google Scholar
Müller, K.J., and Walossek, D., 1991, ‘Orsten’ arthropods–small in size but of great impact on biological and phylogenetic interpretations: Geologiska Föreningen i Stockholm Förhandlingar, v. 113, p. 8890.Google Scholar
Neuhaus, B., 2013, Kinorhyncha (= Echinodera), in Schmidt-Rhaesa, A., ed., Handbook of Zoology: Gastrotricha, Cycloneuralia and Gnathifera, Volume 1: Nematomorpha, Priapulida, Kinorhyncha, Loricifera: Berlin/Boston, Walter de Gruyter GmbH, p. 181348.Google Scholar
Neuhaus, B., and Higgins, R.P., 2002, Ultrastructure, biology, and phylogenetic relationships of Kinorhyncha: Integrative and Comparative Biology, v. 42, p. 619632.Google Scholar
Neuhaus, B., Kristensen, R.M., and Lemburg, C., 1996, Ultrastructure of the cuticle of the Nemathelminthes and electron microscopical localization of chitin: Verhandlungen der Deutschen Zoologischen Gesellschaft, v. 89, p. 221.Google Scholar
Neuhaus, B., Kristensen, R.M., and Peters, W., 1997, Ultrastructure of the cuticle of Loricifera and demonstration of chitin using gold-labelled wheat germ agglutinin: Acta Zoologica (Stockholm), v. 35, p. 193213.Google Scholar
Nielsen, C., 2012, Animal Evolution: Interrelationships of the Living Phyla: Oxford, Oxford University Press, 402 p.Google Scholar
Peng, S., Babcock, L.E., and Cooper, R.A., 2012, The Cambrian Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M., and Ogg, G., eds., Geological Time Scale 2012: Oxford, Elsevier, p. 437488.Google Scholar
Qian, Y., 1977, Hyolitha and some problematica from the lower Cambrian Meishucun Stage in central and southwestern China: Acta Palaeontologica Sinica, v. 16, p. 255275.Google Scholar
Qian, Y., and Bengtson, S., 1989, Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan Province, South China: Fossils and Strata, v. 24, p. 1156.Google Scholar
Qian, Y., and Yin, G., 1984, Small shelly fossils from the lowest Cambrian in Guizhou: Professional Papers of Stratigraphy and Palaeontology, v. 13, p. 91124.Google Scholar
Rota-Stabelli, O., Daley, A.C., and Pisani, D., 2013, Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution: Current Biology, v. 23, p. 392398.Google Scholar
Rozanov, A.Y., Missarzhevsky, V.V., Volkova, N.A., Voronova, L.C., Krylov, I.N., Keller, B.M., Korolyuk, I.K., Lendzion, K., Michniak, R., Pykhova, N.G., and Sidarov, A.D., 1969, Tommotskij jarus i problema nizhnej granizty kembrija [The Tommotian Stage and the Cambrian Lower Boundary Problem]: New Delhi, Amerind Publishing Company (1981 translation), 359 p.Google Scholar
Schmidt-Rhaesa, A., 1998, Phylogenetic relationships of the Nematomorpha—a discussion of current hypotheses: Zoologischer Anzeiger, v. 236, p. 203216.Google Scholar
Shao, T., Liu, Y., Wang, Q., Zhang, H., et al, 2015, New small shelly fossils (Acanthocassis and Xinlispina gen. nov.) from the Fortunian Stage (early Cambrian) in southern China: Acta Geologica Sinica (English Edition), v. 89, p. 14701481.Google Scholar
Shao, T., Liu, Y., Wang, Q., Zhang, H., Tang, H., and Li, Y., 2016, New material of the oldest known scalidophoran animal Eopriapulites sphinx : Palaeoworld, v. 25, p. 111.Google Scholar
Sørensen, M.V., and Pardos, F., 2008, Kinorhynch systematics and biology—an introduction to the study of kinorhynchs, inclusive identification keys to the genera: Meiofauna Marine, v. 16, p. 2173.Google Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.-D., 2007, Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 6799.Google Scholar
Steiner, M., Qian, Y., Li, G., Hagadorn, J.W., and Zhu, M., 2014, The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 398, p. 97124.CrossRefGoogle Scholar
Voronova, L.G., and Missarzhevsky, V.V., 1969, Nakhodki vodoroskej i trubok chervej v pogranichnhkh sloyakh kembriya i dokembriya na severe Sibirskoj platformy [Finds of algae and worm tubes in the Precambrian-Cambrian boundary beds of the northern part of the Siberian Platform]: Doklady AN SSSR, v. 184, p. 207210.Google Scholar
Wills, M.A., Gerber, S., Ruta, M., and Hughes, M., 2012, The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data: Journal of Evolutionary Biology, v. 25, p. 20562076.Google Scholar
Yang, X., and He, T., 1984, New small shelly fossils from lower Cambrian Meishucun Stage of Nanjiang Area, northern Sichuan: Professional Papers in Stratigraphy and Palaeontology, v. 13, p. 3547.Google Scholar
Yang, X., He, Y., and Deng, S., 1983, On the Sinian–Cambrian boundary and the small shelly fossil assemblages in Nanjiang Area, Sichuan: Bulletin of Chengdu Institute of Geology and Mineral Research, Chinese Academy of Geological Science, v. 4, p. 91110.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G., and Yuan, X., 2005, Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China: Palaeontology, v. 48, p. 687708.Google Scholar
Yu, W., 1984, Early Cambrian molluscan faunas of Meishucun Stage with special reference to Precambrian-Cambrian boundary, in Academia Sinica Developments in Geoscience. Contributions to the 27th International Geological Congress, 1984, Moscow: Beijing, Science Press, p. 2133.Google Scholar
Zhang, H.Q., Xiao, S., Liu, Y., Yuan, X., Wan, B., Muscente, A.D., Shao, T., Gong, H., and Cao, G., 2015, Armored kinorhynch-like scalidophoran animals from the early Cambrian: Scientific Reports, v. 5, p. 16521.Google Scholar