Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T15:21:51.772Z Has data issue: false hasContentIssue false

A new paleoecological look at the Dinwoody Formation (Lower Triassic, western USA): intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction

Published online by Cambridge University Press:  20 May 2016

Richard Hofmann
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland,
Michael Hautmann
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland,
Hugo Bucher
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland,

Abstract

The Dinwoody Formation of the western United States represents an important archive of Early Triassic ecosystems in the immediate aftermath of the end-Permian mass extinction. We present a systematic description and a quantitative paleoecological analysis of its benthic faunas in order to reconstruct benthic associations and to explore the temporal and spatial variations of diversity, ecological structure and taxonomic composition throughout the earliest Triassic of the western United States. A total of 15 bivalve species, two gastropod species, and two brachiopod species are recognized in the study area. The paleoecological analysis shows that the oldest Dinwoody communities are characterized by low diversity, low ecological complexity and high dominance of few species. We suggest that this low diversity most likely reflects the consequences of the mass extinction in the first place and not necessarily the persistence of environmental stress. Whereas this diversity pattern persists into younger strata of the Dinwoody Formation in outer shelf environments, an increase in richness, evenness and guild diversity occurred around the Griesbachian–Dienerian boundary in more shallow marine habitats. This incipient recovery towards the end of the Griesbachian is in accordance with observations from other regions and thus probably represents an interregional signal. In contrast to increasing richness within communities (alpha-diversity), beta-diversity remained low during the Griesbachian and Dienerian in the study area. This low beta-diversity reflects a wide environmental and geographical range of taxa during the earliest Triassic, indicating that the increase of within-habitat diversity has not yet led to significant competitive exclusion. We hypothesize that the well-known prevalence of generalized taxa in post-extinction faunas is primarily an effect of reduced competition that allows species to exist through the full range of their fundamental niches, rather than being caused by unusual and uniform environmental stress.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. 1992. Palökologie und zeitliche Verbreitung benthischer Faunengemeinschaften im Unterjura von Chile. Beringeria, 5:3174.Google Scholar
Aberhan, M. 1994. Guild–structure and evolution of Mesozoic benthic shelf communities. Palaios, 9:516540.Google Scholar
Aberhan, M. and Muster, H., 1997. Palaeobiology of Lower Jurassic bakevelliid bivalves from western Canada. Palaeontology, 40:799815.Google Scholar
Allan, R. S. 1940. Studies on the Recent and Tertiary Brachiopoda of Australia and New Zealand. Canterbury Museum Records, 4:231297.Google Scholar
Amalizky, W. 1892. Ueber die Anthracosien der Permformation Russlands. Palaeontographica, 39:125213.Google Scholar
Beatty, T. W., Zonneveld, J. P., and Henderson, C. M. 2008. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: s case for a shallow-marine habitable zone. Geology, 36:771774.Google Scholar
Begg, J. G. and Campbell, H. J. 1985. Etalia, a new Middle Triassic (Anisian) bivalve from New Zealand, and its relationship with other pteriomorphs. New Zealand Journal of Geology and Geophysics, 28:725741.Google Scholar
Beurlen, K. 1944. Beiträge zur Stammesgeschichte der Muscheln. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, 1–2:133145.Google Scholar
Bittner, A. 1891. Triaspetrefakten von Balia in Kleinasien. Jahrbuch der k. k. Geologischen Reichsanstalt, 41:97116.Google Scholar
Bittner, A. 1899. Trias–Ablagerungen des Süd–Ussuri–Gebietes in der ostsibirischen Küstenprovinz. Mémoires du Comité Géologique, 7:135.Google Scholar
Bittner, A. 1901. Ueber Pseudomonotis Telleri und verwandte Arten der unteren Trias. Jahrbuch der k.k. Geologischen Reichsanstalt, 50:559592.Google Scholar
Blakey, R. 2012 . Global Paleogeography. http://www2.nau.edu/rcb7/globaltext2.html (accessed May 2012).Google Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary palaeoecology: Assessing the changing ecology of the past. Geological Society, London, Special Publications, 102:113.Google Scholar
Boyer, D. L., Bottjer, D. J., and Droser, M. L. 2004. Ecological signature of Lower Triassic shell beds of the western United States. Palaios, 19:372380.Google Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J. 2009. Good genes and good luck: Ammonoid diversity and the end–Permian mass extinction. Science, 325:11181121.Google Scholar
Broglio Loriga, C., Masetti, D., and Neri, C. 1983. La Formazione di Werfen (Scitico) delle Dolomiti occidentali: Sedimentologia e biostratigrafia. Rivista Italiana di Paleontologia e Stratigrafia, 58:501598.Google Scholar
Broglio Loriga, C., Goczan, F., Haas, J., Lenner, K., Neri, C., Oravecz Sheffer, A., Posenato, R., Szabo, I., and Toth Makk, A. 1990. The Lower Triassic sequences of the Dolomites (Italy) and Transdanubian Mid-Mountains (Hungary) and their correlation. Memorie di Scienze Geologiche, Università di Padova, 42:41103.Google Scholar
Broglio loriga, C. and Mirabella, S. 1986. II genere Eumorphotis Bittner 1901 nella biostratigrafia dello Scitico, Formazione di Werfen (Dolomiti). Memorie di Scienze Geologiche, 38:245281.Google Scholar
Bronn, H. G. 1849. Index Palaeontologicus oder Übersicht der bis jetzt bekannten fossilen Organismen. Zweite Abtheilung. Enumerator palaeontologicus: Systematische Zusammenstellung und geologische Entwickelungs-Gesetze der organischen Reiche. Schweizerbart, Stuttgart, 776p.Google Scholar
Bruguière, J. G. 1797. Tableau Encyclopédique et Méthodique des trois Règnes de la Nature: Vers, coquilles, mollusques et polypes divers.Google Scholar
Campbell, K. S. W. 1965. Australian Permian terebratuloids. Bureau of Mineral Resources Geology and Geophysics Bulletin, 68:3146.Google Scholar
Catullo, T. A. 1846. Memoria geognostico–paleozoica sulle Alpi Venete. Memorie della Società Italiana delle scienze residente in Modena, 24:1158.Google Scholar
Chavan, A. 1954. Les Pleurophorus et genres voisins. Cahier Géologiques Seyssel, 22:200.Google Scholar
Chen, Z. Q., Kaiho, K., and George, A. D. 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review. Palaeogeography Palaeoclimatology Palaeoecology, 224:270290.Google Scholar
Ciriacks, K. W. 1963. Permian and Eotriassic bivalves of the middle Rockies. Bulletin of the American Museum of Natural History, 125:1100.Google Scholar
Clapham, M. E. and Payne, J. L. 2011. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology, 39:10591062.Google Scholar
Clark, D. L. and Carr, T. R. 1984. Conodont biofacies and biostratigraphic schemes in western North America: A model. Geological Society of America Special Paper, 196:19.Google Scholar
Cossmann, M. 19061912. Essais de Paléoconchologie comparée. Livraison: 7(1906), 261 p.; 8 (1909), 348 p.;9 (1912), 215 p. The author and Rudeval, Paris.Google Scholar
Cox, L. R. 1960. Thoughts on the classification of the Gastropoda. Proceedings of the Malacological Society of London, 33:239261.Google Scholar
Cox, L. R., Newell, N. D., Boyd, D. W., Branson, C. C., Casey, R., Chavan, A., Coogan, A. H., Dechaseux, C., Fleming, C. A., Haas, F., Hertlein, L. G., Kauffman, E. G., Keen, A. Myra, La Rocque, A., Mc Alaster, A. L., Moore, R. C., Nuttall, C. P., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Trueman, E. R., Turner, R. D., and Weir, J. 1969. Bivalvia. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology. Part N. Mollusca 6. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Cranford, P. J. and Grant, J. 1990. Particle clearance and adsorption of phytoplankton and detritus by the sea scallop Placopecten magellanicus (Gmelin). Journal of Experimental Marine Biology and Ecology, 137:105121.Google Scholar
Cuvier, G. 17971798. Tableau élémentaire de l'histoire naturelle des animaux. Paris Baudouin, 710p.Google Scholar
Dagys, A. S. 1965. Triasovye brakhiopody Sibiri [Triassic brachiopods of Siberia]. Nauka, Moskva, 187p. (In Russian)Google Scholar
Dall, W. H. 1889. On the hinge of pelecypods and its development with an attempt toward a better subdivision of the group. American Journal of Science, 38:445462.CrossRefGoogle Scholar
Diener, C. 1923. Lamellibranchiata triadica. InC. Diener (ed.), Fossilium catalogus I: Animalia. Pars 19, 257 S., Berlin(W. Junk).Google Scholar
Duméril, A. M. C. 1806. Zoologie analytique ou méthode naturelle de classification des animaux. Allais, Paris, xxiv, 364p.Google Scholar
Ekdale, A. A. and Mason, T. R. 1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 16:720723.2.3.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 2001. Lessons from the past: Biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 98:53995403.CrossRefGoogle ScholarPubMed
Frech, F. 1891. Die devonischen Aviculiden Deutschlands, ein Beitrag zur Systematik und Stammesgeschichte der Zweischaler. Abhandlungen zur Geologischen Spezialkarte von Preußen und den Thüringischen Staaten, 9:1253.Google Scholar
Fürsich, F. T. 1984. Palaeoecology of boreal invertebrate faunas from the Upper Jurassic of Central East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 48:309364.Google Scholar
Fürsich, F. T. 1994. Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia, 26:327346.Google Scholar
Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N., Weissert, H., Hochuli, P.A., Cordey, C., and Guodun, K., 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth Planetary and Science Letters, 258:593604.CrossRefGoogle Scholar
Giebel, C. 1855. Kritisches über die Myophorien des Muschelkalkes. Zeitschrift für die gesamten Naturwissenschaften, 5:3436.Google Scholar
Girty, G. H. 1927. Descriptions of new species of Carboniferous and Triassic fossils. InMansfield, G. R., (ed.), Geography Geology and Mineral Resources of Part of Southeastern Idaho with Descriptions of Carboniferous and Triassic Fossils by G. H. Girty. U.S. Geological Survey Professional Paper 152, 453p.Google Scholar
Geyer, G., Hautmann, M., Hagdorn, H., Ockert, W., and Streng, M., 2005. Well-preserved mollusks from the lower Keuper (Ladinian) of Hohenlohe (Southwest Germany). Paläontologische Zeitschrift, 79:429460.Google Scholar
Goryansky, V. Yu, and Popov, L. E. 1985. Morphology, systematic position and origin of the inarticulate brachiopods with calcareous shells. Paleontologicheskii Zhurnal, 1985:314.Google Scholar
Gray, J. E. 1847. A list of the genera of Recent Mollusca, their synonyms and types. Proceedings of the Zoological Society of London, 15:129219.Google Scholar
Grobben, C. 1894. Zur Kenntnis der Morphologie, der Verwandtschaftsverhältnisse und des Systems der Mollusken. Sitzungsberichte der Akademie der Wissenschaften Wien, 103:6186.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end–Palaeozoic extinctions? Historical Biology, 5:257262.Google Scholar
Hallam, A. and Wignall, P. B., 1997. Mass Extinctions and Their Aftermath. Oxford University Press, 328p.Google Scholar
Hammer, Ø, Harper, D. A. T., and Ryan, P. D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9 p.http://palaeo–electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Hauer, F. von. 1850. Ueber die von Herrn Bergrath W. Fuchs in den Venetianer Alpen gesammelten Fossilien. Denkschriften der Akademie der Wissenschaften, Mathematisch–Naturwissenschaftliche Klasse, 2:109126.Google Scholar
Hautmann, M. 2004. Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution”. Lethaia, 37:165172.CrossRefGoogle Scholar
Hautmann, M., Bucher, H., Brühwiler, T., Goudemand, N., Kaim, A., and Nützel, A. 2011. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end–Permian biotic crisis. Geobios, 44:7185.Google Scholar
Hautmann, M. and Nützel, A. 2005. First record of a heterodont bivalve (Mollusca) from the Early Triassic: Palaeoecological significance and implications for the ‘Lazarus problem'. Palaeontology, 48:11311138.Google Scholar
Hautmann, M., Smith, A. B., McGowan, A. J., and Bucher, H. 2013. Bivalves from the Olenekian (Early Triassic) of southwestern Utah: Systematics and evolutionary significance. Journal of Systematic Palaeontology, 11:263293.CrossRefGoogle Scholar
Hertwig, C. W. T. R. 1895. Lehrbuch der Zoologie (third edition). Fischer, Jena, 599p.Google Scholar
Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H., and Hautmann, M. 2011. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 310:216226.Google Scholar
Hofmann, R., Hautmann, M., Wasmer, M., and Bucher, H. 2013. Palaeoecology of the Virgin Formation (Utah, U.S.A.) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica, 58:49173.Google Scholar
Hoover, P. R. 1979. Early Triassic terebratulid brachiopods from the western interior of the United States. U.S. Geological Survey Professional Paper, 1057:121.Google Scholar
Jablonski, D., Sepkoski, J. J., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore–offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222:11231125.Google Scholar
Jaccard, P. 1901. “Étude comparative de la distribution florale dans une portion des Alpes et des Jura”, Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547579.Google Scholar
Kaim, A. 2009. Gastropods, p. 141156. InY. Shigeta, Y. D. Zakharov, H. Maeda, and A. M. Popov (eds.), The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science Monographs, 38.Google Scholar
Kaim, A. and Nützel, A. 2011. Dead bellerophontids walking—the short Mesozoic history of the Bellerophontoidea (Gastropoda). Palaeogeography, Palaeoclimatology, Palaeoecology, 308:190199.Google Scholar
Kaim, A., Nützel, A., Bucher, H., Brühwiler, T., and Goudemand, N. 2010. Early Triassic (late Griesbachian) gastropods from South China (Shanggan, Guangxi). Swiss Journal of Geosciences, 103:121128.Google Scholar
Kauffman, E. G. and Harries, P. J. 1996 The importance of crisis progenitors in recovery from mass extinction, p. 1539. InHart, M. B.(ed.), Biotic Recovery from Mass Extinction Events. Geological Society, London, Special Publications,102.Google Scholar
Kiparisova, L. D. 1938. Nizhnetriasovye plastinchatozhabernye Ussurijskogo kraya. Trudy Geologicheskogo Instituta, 7:197311. (In Russian)Google Scholar
Kiparisova, L. D. and Krishtofovich, A. N. 1954. Polevoj atlas kharakternykh kompleksov fauny i fiery triasovykh otlozhenij primorskogo kraya [Field atlas of typical complexes offauna and flora of Triassic deposits in Primorye region]. Gosgeoltekhizdat, Moscow, 127 p. (In Russian)Google Scholar
Kittl, E. 1894. Die Gastropoden der Schichten von St. Cassian der südalpinen Trias. 3. Theil. Annalen des kaiserlich–koniglichen Naturhistorischen Hofmuseums, 9:143275.Google Scholar
Kittl, E. 1904. Geologie der Umgebung von Sarajevo. Jahrbuch der Geologischen Reichsanstalt (for 1903), 53:707738.Google Scholar
Krystyn, L., Richoz, L., Baud, S., and Twitchett, R. J. 2003. A unique Permian–Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 191:329344.Google Scholar
Kumagae, T. and Nakazawa, K. 2009. Bivalves, p. 156173. InShigeta, Y., Zakharov, Y. D., Maeda, H., and Popov, A. M.(eds.), The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science Monographs, 38.Google Scholar
Kummel, B. 1954. Triassic stratigraphy of Southeastern Idaho and adjacent areas. Geological Survey Professional Paper, 254:165194.Google Scholar
Kummel, B. 1957 Paleoecology of Lower Triassic formations of southeastern Idaho and adjacent areas. Memoirs of the Geological Society of America, 67:437468.Google Scholar
Lamarck, J. B. 1819. Histoire naturelle des Animaux sans vertèbres. Classe onzième. Les Conchifères, 6:1258.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus, I.EditioDecima. Laurentius Salvius, Stockholm, 824p.Google Scholar
Marwick, J. 1953. Divisions and faunas of the Hokonui system (Triassic and Jurassic). New Zealand Geological Survey, Paleontological Bulletin, 21:1141.Google Scholar
Mansfield, G. R. 1927. Geography, Geology, and Mineral Resources of Part of Southeastern Idaho. U.S. Geological Survey Professional Paper 152, 453p.Google Scholar
Mata, S. A. and Bottjer, D. J. 2011. Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end–Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300:158178.Google Scholar
Maughan, E. K. 1979. Petroleum source rock evaluation of the Permian Park City Group in the northeastern Great Basin, Utah, Nevada, and Idaho, p. 523530. InNewman, G. W. and Goode, H. D.(eds.), Basin and Range Symposium. Rocky Mountain Association of Geologists and Utah Geological Association.Google Scholar
McCarthy, P. T. and Miller, D. M. 2002. Geologic map of the Terrace Mountain East quadrangle, Box Elder County, Utah. Utah Geological Survey Miscellaneous Publication 02, 13p.Google Scholar
McCoy, F. 1852. A Synopsis of the Classification of the British Palaeozoic Rocks [By the Rev. Adam Sedgwick] with a Systematic Description of the British Palaeozoic Fossils in the Geological Museum of the University of Cambridge [by Frederick McCoy] with Figures of the New and Imperfectly Known Species. Parker and Son, London, 661p.Google Scholar
McRoberts, C. A. and Newton, C. R. 1995. Selective extinction among end-Triassic European bivalves. Geology, 23:102104.Google Scholar
Meek, F. B. and Hayden, F. V., 1864. Palaeontology of the Upper Missouri. Smithsonian Contributions to Knowledge, 14:1135.Google Scholar
Meek, F. B. 1877. Part I Palaeontology, p. 1197. InC. King (ed.), Annual Report to the Secretary of War on the U.S. Geological Exploration of the Fortieth Parallel 4. Government Printing Office, Washington.Google Scholar
Menke, C. T. 1828. Synopsis methodica Molluscorum generum omnium et specie rum earum, quae in Museo Menkeano Adservantur. Pyrmonti, 91p.Google Scholar
Miller, S. A. 1877. The American Paleozoic fossils: A catalogue of the genera and species. Published by the author, Cincinnati, 334p.Google Scholar
Miller, A. I. 1988. Spatio–temporal transitions in Paleozoic bivalvia: An analysis of North American fossil assemblages. Historical Biology, 1:251273.Google Scholar
Morisita, M. 1959: Measuring of interspecific association and similarity between communities. Memoires of the Faculty of Science, Kyushu University, Series E. Biology, 3:6580.Google Scholar
Mundil, R., Ludwig, K. R., Metcalfe, I., Renne, P. R. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed system zircons. Science, 305:17601763.Google Scholar
Muller, S. W. and Ferguson, H. G. 1939. Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada. Geological Society of America Bulletin, 50:15731624.Google Scholar
Münster, G.Graf, zu 1841. Beiträge zur Petrefacten–Kunde. IV. Beschreibung und Abbildung der in den Kalkmergelschichten von St. Cassian gefundenen Versteinerungen. Buchner'sche Buchhandlung, 152p.Google Scholar
Muster, H. 1995. Taxonomie und Paläobiogeographie der Bakevelliidae (Bivalvia). Beringeria, 14:1161.Google Scholar
Nakazawa, K. 1977. On Claraia of Kashmir and Iran. Journal of the Palaeontological Society of India, 20:191204.Google Scholar
Newell, N. D. 1938. Late Paleozoic pelecypods: Pectinacea. State Geological Survey of Kansas Publications, (for 1937), 10:1123.Google Scholar
Newell, N. D. 1955. Permian pelecypods of east Greenland. Meddelelser om Gr⊘nland, 110:136.Google Scholar
Newell, N. D. 1965. Classification of the Bivalvia. American Museum Novitates, 2206:125.Google Scholar
Newell, N. D. 1969. Order Modiomorphoida Newell, new order, p. N393. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Volume 1. Geological Society of America and University of Kansas Press, Boulder.Google Scholar
Newell, N. D. and Boyd, D. W. 1995. Pectinoid bivalves of the Permian–Triassic crisis. American Museum of Natural History Bulletin, 227:195.Google Scholar
Newell, N. D. and Boyd, D. W. 1999. A new Lower Triassic Permophorus from the Central Rocky Mountains. American Museum Novitates, 3263:15.Google Scholar
Newell, N. D. and Kummel, B. 1942. Lower Eo-Triassic stratigraphy, western Wyoming and southeast Idaho. Geological Society of America Bulletin, 53:937995.Google Scholar
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A. A., and Guex, J. 2006. New Early to Middle Triassic U–Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth and Planetary Science Letters, 243:463475.CrossRefGoogle Scholar
Paull, R. K. and Paull, R. A. 1994. Shallow marine sedimentary facies in the earliest Triassic (Griesbachian) Cordilleran Miogeocline, U.S.A. Sedimentary Geology, 93:181191.Google Scholar
Pruss, S. B. and Bottjer, D. J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios, 19:551564.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206:217218.Google Scholar
Rodland, D. L. and Bottjer, D. J. 2001. Biotic recovery from the end-Permian mass extinction: Behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios, 16:95101.2.0.CO;2>CrossRefGoogle Scholar
Savrda, C. E. and Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14:36.Google Scholar
Schauroth, K. von. 1859. Kritisches Verzeichnis der Versteinerungen der Trias im Vicentinischen. Sitzungsberichte der Kaiserlichen Akademie derWissenschaftenWien, Mathematisch-Naturwissenschaftliche Classe, 34:283356.Google Scholar
Scholten, R., Keenmon, K. A., and Kupsch, W. O. 1955. Geology of the Lima region, southwestern Montana and adjacent Idaho. Bulletin of the Geologic Society of America, 66:345404.Google Scholar
Schubert, J. K. and Bottjer, D. J. 1995. Aftermath of the Permian–Triassic mass extinction event-paleoecology of Lower Triassic carbonates in the western U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 116:139.Google Scholar
Schulbert, C. and Nützel, A. 2005. Facies of two important Early Triassic gastropod lagerstätten: implications for diversity patterns in the aftermath of the end-Permian mass extinction. Facies, 51:495515.Google Scholar
Scopoli, J. A. 1777. Introdvctio ad historiam natvralem sis tens genera lapidvm, plantarvm, et animalivm hactenvs detecta, caracteribvs essentialibvs donata, in tribvs divisa, svbinde ad leges natvrae. Apvd Wolfgangvm Gerle, Prague, 506p.Google Scholar
Sepkoski, J. J. 1988. Alpha, beta, or gamma—where does all the diversity go. Paleobiology, 14:221234.Google Scholar
Shigeta, Yu. Y., Zakharov, D., Maeda, H., and Popov, A. M.(eds.). 2009. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science Monographs, 38, 218p.Google Scholar
Simroth, H. 1906. Mollusca, p. 8589. InBronn, H. G.(ed.), Klassen und Ornungen des Tier–Reichs, 2nd Edition,Volume 3.Google Scholar
Spath, L. F. 1930. The eotriassic invertebrate fauna of east Greenland. Meddelelser om Gr⊘nland, 83:190.Google Scholar
Stifel, P. B. 1964. Geology of the Terrace and Hogup Mountains, Box Elder County, Utah. Ph.D. dissertation. University of Utah, Salt Lake City, 173p.Google Scholar
Stanley, M. S. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology, 46:165212.Google Scholar
Twitchett, R. J. 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:190213.Google Scholar
Twitchett, R. J. and Barras, C. G. 2004. Trace fossils in the aftermath of mass extinction events, p. 397418. InMcIlroy, D.(ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, London.Google Scholar
Twitchett, R. J. and Wignall, P. B. 1996. Trace fossils and the aftermath of the Permo-Triassic mass extinction: Evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 124:137151.Google Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R., and Richoz, S. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology, 32:805808.Google Scholar
Waagen, W. 1883. Productus Limestone Fossils, Part IV, fas. 2. Salt Range Fossils, Palaeontologia Indica, Series 13, 1:391546.Google Scholar
Waagen, W. 1895. Salt-Range fossils, Vol. 2, Fossils from the Ceratite Formation. Pisces–Ammonoidea (Cephalopoda). Memoirs of the Geological Survey of India, Palaeontologia Indica, 13:1323.Google Scholar
Waller, T. R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society of London, Ser. B, 284:345365.Google Scholar
Ware, D., Jenks, J. F., Hautmann, M., and Bucher, H. 2011. Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, U.S.A.) and their significance for palaeobiogeography and palaeoceanography. Swiss Journal of Geosciences, 104:161181.Google Scholar
Wasmer, M., Hautmann, M., Hermann, E., Ware, D., Roohi, G., Ur–rehman, K., Yaseen, A., and Bucher, H. 2012. Olenekian (Early Triassic) bivalves from the Salt Range and Surghar Range, Pakistan. Palaeontology, 55:10431073.Google Scholar
Whittaker, R. H. 1972. Evolution and Measurement of Species Diversity. Taxon, 21:213251.CrossRefGoogle Scholar
Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan, New York, xviii, 385p.Google Scholar
Wignall, P. B. and Hallam, A. 1992. Anoxia as a cause of the Permian Triassic mass extinction-facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 93:2146.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H., Holmer, L. E., and Popov, L. E. 1996. A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society, Biological Sciences, 35:11711193.Google Scholar
Wittenburg, P. von. 1908. Beiträge zur Kenntnis der Werfener Schichten Südtirols. Geologische und Paläontologische Abhandlungen, neue Folge, 8:251289.Google Scholar
, W. 1975. The Gastropod Fossils from the Qomolangma Feng Region. Science Press, Peking, 214p. (In Chinese)Google Scholar
Ziethen, C. H. von. 1830. Die Versteinerungen Württembergs. Verlag and Lithographie des Werkes Unsere Zeit, Stuttgart, 102p.Google Scholar
Supplementary material: File

Hofmann et al. supplementary material

Hofmann et al. supplementary material

Download Hofmann et al. supplementary material(File)
File 97.8 KB