Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T12:18:06.338Z Has data issue: false hasContentIssue false

Scale microfossils from the Early Cambrian of northwest Canada

Published online by Cambridge University Press:  14 July 2015

Carol Wagner Allison
Affiliation:
Museum, University of Alaska, Fairbanks 99701
Jerry W. Hilgert
Affiliation:
Institute of Northern Forestry, U.S.D.A., U.S. Forest Service, Fairbanks, Alaska 99701

Abstract

Scale microfossils are locally abundant in rocks of the uppermost Tindir Group and basal beds of the overlying Funnel Creek Limestone in northwest Canada. Co-occurring organic-walled fossils in this microbial mat biota resemble forms described from the Upper Proterozoic but mineralized spicules of Cambrian aspect are also present. The fossils occur in chert nodules or beds in flat laminated limestones interpreted to represent accumulation in a subtidal environment.

The scale microfossils are of three basic shapes: Group 1, simple imperforate scales; Group 2, thin disk-like scales with prominent, regularly arranged pores; Group 3, ring-like scales with distinct three dimensional morphology. All taxa in Groups 1 and 2 have scales of a single morphology and narrow size range; Group 3 taxa may contain one, two, or (?)three morphotypes and sizes of scales. The scales of Group 1 taxa are not closely comparable to known Chromophyta but are similar to scales of several modern Rhizopoda. Some of the Group 2 taxa can be compared to members of the Chrysophyta, whereas others have general resemblance to centric diatom valves. Most Group 3 taxa are morphologically comparable to members of the Prymnesiophyta. All scales that could be analyzed petrographically are now siliceous and none could be confirmed as polycrystalline.

The scale microfossils are referred to new taxa, including 17 genera, 26 species, and 6 varieties. Newly described taxa are: Group 1) Archeoxybaphon polykeramoides n. gen., n. sp., Archeoxybaphon diminutum n. sp., Archeoxybaphon amydrum n. sp., Hyaloxybaphon monokeramoides n. gen., n. sp.; Group 2) Paleohexadictyon litosum n. gen., n. sp., Paleohexadictyon myriotrematum n. sp., Paleohexadictyon coroniforme n. sp., Paleohexadictyon coroniforme var. tetragonum n. var., Paleohexadictyon coroniforme var. delicatum n. var., Chilodictyon caliporum n. gen., n. sp., Chilodictyon caliporum var. striatimarginatum n. var., Chilodictyon myriocanthum n. sp., Characodictyon skolopium n. gen., n. sp., Characodictyon skolopium var. tetragonum n. var., Characodictyon skolopium var. soleniscum n. var., Characodictyon diskolopium n. sp., Characodictyon diskolopium var. circulare n. var., Radiocerniculum inornatum n. gen., n. sp., Spinicerniculum tribulosum n. gen., n. sp.; Group 3) Petasisquama alta n. gen., n. sp., Petasisquama versicorona n. sp., Petasisquama laciniata n. sp., Bicorniculum brochum n. gen., n. sp., Confinisquama fimbriata n. gen., n. sp., Aqualisquama centritubula n. gen., n. sp., Invaginatibalteus dimorphus n. gen., n. sp., Invaginatibalteus depressus n. sp., Paterisquama crassa n. gen., n. sp., Altarmilla multistriata n. gen., n. sp., Patinisquama cirratomarginata n. gen., n. sp., Paleocrassalimbus spinosus n. gen., n. sp., and Paleomegasquama coccolithoides n. gen., n. sp.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, C. W. 1981. Siliceous microfossils from the Lower Cambrian of northwest Canada: possible source for biogenic chert. Science, 211:5355.CrossRefGoogle ScholarPubMed
Allison, C. W. In press. Paleontology of Late Proterozoic and Early Cambrian rocks of east-central Alaska. U.S. Geological Survey Professional Paper.Google Scholar
Allison, C. W., Young, G. M., Yeo, G. M. and Delaney, G. D. 1981. Glaciogenic rocks of the upper Tindir Group, Alaska, p. 720723. In Hambrey, M. J. and Harland, W. B. (eds.), Pre-Pleistocene Tillites. Cambridge University Press, Cambridge.Google Scholar
Awramik, S. M. and Allison, C. W. 1980. Earliest Cambrian blue-green algal communities from the Yukon Territory of Canada. 26th International Geological Congress (Paris), July 1980, Abstracts, 1:198.Google Scholar
Awramik, S. M., Cloud, P., Morrison, K. and Hadley, D. G. 1979. Earliest Phanerozoic or latest Proterozoic fossils from the Arabian Shield. Precambrian Research, 10:7393.Google Scholar
Bauld, J. 1983. Response of microbial mats to salinity and desiccation. Poster Session, 3rd International Symposium on Fossil Algae, August 1983, Golden, Colorado.Google Scholar
Bengtson, S. and Missarzhevsky, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans. U.S. Geological Survey Open File Report, 81–743:1921.Google Scholar
Bourrelly, P. 1963. Loricae and cysts in the Chrysophyceae. Annals of the New York Academy of Science, 108:421429.CrossRefGoogle ScholarPubMed
Bovee, E. C. 1981. Distribution and forms of siliceous structures among Protozoa, p. 233279. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Brabb, E. E. 1967. Stratigraphy of the Cambrian and Ordovician rocks of east-central Alaska. U.S. Geological Survey Professional Paper 559-A, 30 p.CrossRefGoogle Scholar
Brabb, E. E. and Churkin, M. Jr. 1969. Geologic map of the Charley River Quadrangle, east-central Alaska. U.S. Geological Survey Miscellaneous Investigation Map I-573.Google Scholar
Cairnes, D. D. 1914. The Yukon-Alaska international boundary, between Porcupine and Yukon Rivers. Canada Department of Mines Memoir 67, 161 p.Google Scholar
Carlisle, E. M. 1981. Silicon in bone formation, p. 6994. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Deflandre, G. 1970. Présence de nannofossiles calcaires (coccolithes et Incertae Sedis) dans le Siluro-Dévonien d'Afrique du Nord. Institut de France Académie des Sciences Comptes Rendus, Série D, 270:29162921.Google Scholar
Febvre-Chevalier, C. 1985. IV Class Heliozoa Haeckel, 1866, p. 302317. In Lee, J. J., Hutner, S. H. and Bovee, E. C. (eds.), An Illustrated Guide to the Protozoa. Allen Press, Lawrence, Kansas.Google Scholar
Francis, S., Margulis, L. and Barghoorn, E. S. 1978. On the experimental silicification of microorganisms II: on the time of appearance of eucaryote organisms in the fossil record. Precambrian Research, 6:65100.CrossRefGoogle Scholar
Fritsch, F. E. 1935. The Structure and Reproduction of the Algae. Vol. I. University Press, Cambridge, Massachusetts, 791 p.Google Scholar
Green, R. B. 1980. Rare scale bearing Chrysophyceae of Otter Lake, British Columbia. Canadian Journal of Botany, 58:599603.CrossRefGoogle Scholar
Haq, B. U. 1978. Calcareous nannoplankton, p. 79108. In Haq, B. U. and Boersma, A. (eds.), Introduction to Marine Micropaleontology. Elsevier, New York.Google Scholar
Hartman, W. D. 1981. Form and distribution of silica in sponges, p. 453493. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Jost, M. 1968. Microfossils in problematic systematic position from Precambrian rocks at White Pine, Michigan. Micropaleontology, 14:365368.CrossRefGoogle Scholar
Kastner, M. 1978. Silica in sediments, p. 742748. In Fairbridge, R. W. and Bourgeois, J. (eds.), The Encyclopedia of Sedimentology. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Kline, G. L. 1977. Earliest Cambrian (Tommotian) age of the upper Tindir Group, east-central Alaska. Geological Society of America Abstracts with Programs, 9:448.Google Scholar
Krumbein, W. E. and Cohen, Y. 1977. Primary production, mat formation and identification: contribution of oxygenic and facultative anoxygenic cyanobacteria, p. 3756. In Flugel, E. (ed.), Fossil Algae. Springer-Verlag, New York.CrossRefGoogle Scholar
Loeblich, A. R. Jr. 1974. Protistan phylogeny as indicated by the fossil record. Taxon, 23:277290.CrossRefGoogle Scholar
Mertie, J. B. Jr. 1933. The Tatonduk-Nation District, Alaska. U.S. Geological Survey Bulletin, 836:347443.Google Scholar
Nishida, S. 1979. Atlas of Pacific nannoplanktons. Osaka Museum of Natural History Special Paper 3, 31 p.Google Scholar
Norris, R. E. and Pienaar, R. N. 1978. Comparative fine structure studies on five marine species of Pyramimonas (Chlorophyta, Prasinophyceae). Phycologia, 17:4551.CrossRefGoogle Scholar
Ogden, C. G. and Hedley, R. H. 1980. An Atlas of Freshwater Testate Amoebae. Oxford University Press, Oxford, 222 p.Google Scholar
Palmer, A. R. 1968. Cambrian trilobites of east-central Alaska. U.S. Geological Survey Professional Paper 559-B, 115 p.CrossRefGoogle Scholar
Payne, M. W. and Allison, C. W. 1978. Precambrian and Cambrian rocks of east-central Alaska. American Association of Petroleum Geologists Abstracts, 62:553.Google Scholar
Pickett-Heaps, J. D. 1975. Green Algae: Structure, Reproduction and Evolution in Selected Genera. Sinaur Associates, Sunderland, Massachusetts, 606 p.Google Scholar
Round, F. E. 1981. Morphology and phyletic relationships of the silicified algae and the archetypal diatom—monophyly or polyphyly, p. 97128. In Simpson, T. L. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
Round, F. E. and Crawford, R. M. 1981. The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London, B, 211:237260.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Stewart, K. D. and Mattox, K. 1980. Phylogeny of phytoflagellates, p. 433462. In Cox, E. R. (ed.), Phytoflagellates. Elsevier North Holland, County Clare, Ireland.Google Scholar
Takahashi, E. 1972. Studies on genera Mallomonas and Synura, and other plankton in freshwater with the electron microscope VIII, on three new species of Chrysophyceae. Botanical Magazine, Tokyo, 85:293302.CrossRefGoogle Scholar
Takahashi, E. 1978. Electron Microscopical Studies of the Synuraceae (Chrysophyceae) in Japan, Taxonomy and Ecology. Tokai University Press, Tokyo, 194 p.Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman, San Francisco, 1028 p.Google Scholar
Thomsen, H. A. 1975. An ultrastructural survey of the chrysophycean genus Paraphysomonas under natural conditions. British Phycological Journal, 10:113127.CrossRefGoogle Scholar
Woese, C. R. and Fox, G. E. 1977. The concept of cellular evolution. Journal of Molecular Evolution, 10:16.CrossRefGoogle ScholarPubMed
Wujek, D. E. and Kristiansen, J. 1978. Observations on bristle and scale production in Mallomonas caudata (Chrysophyceae). Archiv fuer Protistenkunde, 120:213221.CrossRefGoogle Scholar
Young, G. M. 1982. The late Proterozoic Tindir Group, east-central Alaska: evolution of a continental margin. Geological Society of America Bulletin, 93:759783.2.0.CO;2>CrossRefGoogle Scholar