Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T09:12:56.653Z Has data issue: false hasContentIssue false

Taxonomy, ontogeny and paleoecology of two species of Harbinia TSAO, 1959 (Crustacea, Ostracoda) from the Santana Formation, Lower Cretaceous, northeastern Brazil

Published online by Cambridge University Press:  20 May 2016

Lucas Silveira Antonietto
Affiliation:
Universidade de Brasília, Campus Darcy Ribeiro, Brasilia, Distrito Federal, Brazil 70910-900, ;derme@unb.br; ; ;
Silvia Regina Gobbo
Affiliation:
Universidade de Brasília, Campus Darcy Ribeiro, Brasilia, Distrito Federal, Brazil 70910-900, ;derme@unb.br; ; ;
Dermeval Aparecido Do Carmo
Affiliation:
Universidade de Brasília, Campus Darcy Ribeiro, Brasilia, Distrito Federal, Brazil 70910-900, ;derme@unb.br; ; ;
Mário Luiz Assine
Affiliation:
Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, Sao Paulo, Brazil 13506-900,
Maria Alice Morgado Castanheira Cordeiro Fernandes
Affiliation:
Universidade de Brasília, Campus Darcy Ribeiro, Brasilia, Distrito Federal, Brazil 70910-900, ;derme@unb.br; ; ;
José Eduardo Lima E Silva
Affiliation:
Universidade de Brasília, Campus Darcy Ribeiro, Brasilia, Distrito Federal, Brazil 70910-900, ;derme@unb.br; ; ;

Abstract

The Araripe Basin is the most extensive interior basin in northeastern Brazil, comprising areas of Ceará, Piauí and Pernambuco states. The Santana Formation, attributed to the Aptian–?lower Albian age of the basin, is subdivided into two members, Crato and Romualdo, which bear an abundant fossil record of plant fragments, arthropods and vertebrates, especially 3D-preserved fishes. The present study focuses on the taxonomy, ontogeny and paleoecology of two ostracode species from the Romualdo Member and the top section of the Crato Member (Ipubi layers), Harbinia salitrensis (Krömmelbein and Weber, 1971) emend. and H. alta new species. The ontogenetic series for both species are illustrated, except for the A-8 instar; H. salitrensis is also redescribed. The present work is also the first to produce quantitative information about the paleoecology of the Santana Formation based on ostracode populations. The results obtained from analyses of the population age-structure of both species, in addition to dominance (Simpson) and diversity index (Shannon) values, corroborated previous data on the studied sequence. According to these results, the strata were deposited in a limnic, low-to-moderate energy environment with salinity levels varying from oligohaline to mesohaline. The new data indicate the possibility of these environments also being hypersaline.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, M. and Coimbra, J. C. 1989. Análise paleoecológica do registro das primeiras ingressões marinhas na Formação Santana (Cretáceo Inferior da Chapada do Araripe). 1st Simpósio Sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, Minutes, 225239.Google Scholar
Assine, M. L. 1992. Análise estratigráfica da bacia do Araripe, Nordeste do Brasil. Revista Brasileira de Geociências, 22:289300.Google Scholar
Assine, M. L. 2007. Bacia do Araripe. Boletim de Geociências da Petrobras, 15:371389.Google Scholar
Bate, R. H. 1972. Phosphatized ostracodes with appendages from the Lower Cretaceous of Brazil. Palaeontology, 15:379393.Google Scholar
Bate, R. H. 1999. Non-marine ostracod assemblages of the Pre-Salt rift basins of West Africa and their role in sequence stratigraphy, p. 283292. InCameron, N. R., Bate, R. H., and Clure, V. S.(eds.), The Oil and Gas Habitats of the South Atlantic. Geological Society of London Special Publication 153.Google Scholar
Berthou, P. Y., E. Dépêche, F., Colin, J. P., Figueira, J. B. M., and Teles, M. S. L. 1994. New data on the ostracodes from the Crato lithologic unities (lower Member of the Santana Formation, latest Aptian–lower Albian) of the Araripe Basin (northeastern Brazil). Acta Geologica Leopoldensia, 17:539554.Google Scholar
Berthou, P. Y., Viana, M. S. S., and Campos, D. A. 1990. Coupe de la Formation Santana dans le secteur de la “Pedra Branca” (Santana do Cariri) (Bassin d'Araripe, NE du Brésil). Contribution a l'étude de la sedimentologie et des paleoenvironnements. 1st Simpósio Sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, Minutes, 173191.Google Scholar
Beurlen, K. 1962. A geologia da Chapada do Araripe. Anais da Academia Brasileira de Ciências, 34:365370.Google Scholar
Boomer, I., Horne, D. J., and Slipper, I. J. 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? p. 153179. InPark, L. E. and Smith, A. J.(eds.), Bridging the Gap. Trends in the Ostracode Biological and Geological Sciences. Papers of the Paleontological Society, 9.Google Scholar
Carvalho, M. S. S. and Santos, M. E. C. M. 2005. History of the Paleontological Research in the Araripe Basin, Northeast Brazil. Anuário do Instituto de Geociências-UFRJ, 28:1534.CrossRefGoogle Scholar
Castro, D. L. and Castelo Branco, R. M. G. 1999. Caracterização da arquitetura interna das bacias do Vale do Cariri (NE do Brasil) com base em modelagem gravimétrica 3-D. Brazilian Journal of Geophysics, 17:129144.Google Scholar
Clarke, K. R. and Warwick, R. M. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. Marine Ecology Progress Series, 216:265278.Google Scholar
Coimbra, J. C., Arai, M., and Carreño, A. L. 2002. Biostratigraphy of Lower Cretaceous microfossils from the Araripe Basin, Northeastern Brazil. Geobios, 35:687698.Google Scholar
Dépêche, F., Bérthou, P. Y., and Campos, D. A. 1990. Quelques observations sur les faunes d'ostracodes du Cretácé du Bassin d'Araripe (NE du Brésil). 1st Simpósio sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, Minutes, 293308.Google Scholar
Do Carmo, D. A., Tomassi, H. Z., and De Oliveira, S. B. S. G. 2004. Taxonomia e distribuição estratigráfica dos ostracodes da Formação Quiricó, Grupo Areado (Cretáceo Inferior), bacia Sanfranciscana, Brasil. Revista Brasileira de Paleontologia, 7:139149.Google Scholar
Do Carmo, D. A., Whatley, R., Queiroz Neto, J. V., and Coimbra, J. C. 2008. On the validity of two Lower Cretaceous non-marine ostracode genera: biostratigraphic and paleogeographic implications. Journal of Paleontology, 82:790799.Google Scholar
Fara, E., Saraiva, A. A. F., Campos, D. A., Moreira, J. K. R., Siebra, D. C., and Kellner, A. W. A. 2005. Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeoenvironmental and palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 218:145160.Google Scholar
Guan, S., Sun, Q., Jiang, Y., Li, L., Zhao, B., Zhang, X., Yang, R., and Feng, B. 1978. Ostracoda, p. 1765. InDiqu, Z. and Tuce, G. W.(eds.), Paleontological Atlas of Central and South China—Microfossils. Geological Publication House, Beijing, 4.Google Scholar
Heimhofer, U. and Hochuli, P. A. 2010. Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Review of Palaeobotany and Palynology, 161:105126.Google Scholar
Hou, Y. 1984. Problems concerning the classification of the genera Harbinia, Sinocypris, Quadracypris and Nanxiongium (Ostracoda). Acta Micropaleontologica Sinica, 9:1734.Google Scholar
Hudson, J. D. 1990. Salinity from faunal analysis and geochemistry, p. 406408. InBriggs, D. E. G. and Crowther, P. R.(eds.), Palaeobiology: A Synthesis. Blackwell Science, Cambridge.Google Scholar
Kellner, A. W. A. 2002. Membro Romualdo da Formação Santana, Chapada do Araripe, CE—Um dos mais importantes depósitos fossíliferos do Cretáceo brasileiro, p. 121130. InSchobbenhaus, C., Campos, D. A., Queiroz, E. T., Winge, M., and Berbert-Born, M. L. C.(eds.), Sítios Geológicos e Paleontológicos do Brasil. DNPM/CPRM-SIGEP, Brasília.Google Scholar
Kesling, R. V. 1951. Terminology of ostracod carapaces. Contributions from the Museum of Paleontology of the University of Michigan, 1 (4):93171.Google Scholar
Krebs, C. 1989. Ecological Methodology. Harper Collins, New York, 654 p.Google Scholar
Krömmelbein, K. and Weber, R. 1971. Ostracoden des “Nordost-BrasilianischenWealden”. Geologisches Jahrbuch, 115:193.Google Scholar
Liebau, A. 2005. A revised classification of the higher taxa of the Ostracoda (Crustacea). Hydrobiologia, 538:115137.Google Scholar
Lüttig, G. 1962. Zoologische und paläontologische Ostracoden-Systematik, p. 154–184. In A. Rabien and H. Schmidt (eds.), Festband Hermann Schmidt zur Vollendung des 70. E. Schweizerbart′sche, Stuttgart, 3.Google Scholar
Maisey, J. G. 1991. Santana Fossils: An Illustrated Atlas. T. F. H. Publications, Neptune City, 459 p.Google Scholar
Martill, D. M. 2007. The age of the Cretaceous Santana Formation fossil Konservat Lagerstätte of north-east Brazil: a historical review and an appraisal of the biochronostratigraphic utility of its palaeobiota. Cretaceous Research, 28:895920.Google Scholar
Martill, D. M. and Wilby, P. R. 1993. Stratigraphy, p. 2050. InMartill, D. M.(ed.), Fossils of the Santana and Crato formations, Brazil—Field Guides to Fossils. The Palaeontological Association, London. 5.Google Scholar
Moura, J. A. 1987. Biocronoestratigrafia da seqüência não marinha do Cretáceo inferior da bacia de Campos, Brasil: ostracodes. 10th Congresso Brasileiro de Paleontologia, Rio de Janeiro, Anals, 2:717731.Google Scholar
Pons, D., Bérthou, P. Y., and Campos, D. A. 1990. Quelques observations sur la palynologie de l'Aptien Supérieur el de l'Albien du bassin d'Araripe (N.E. du Brésil). 1st Simpósio sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, Minutes, 241252.Google Scholar
Ponte, F. C. and Appi, C. J. 1990. Proposta de revisão da coluna litoestratigráfica da Bacia do Araripe. 36th Congresso Brasileiro de Geologia, Natal, Anals, 1:211226.Google Scholar
Ponte, F. C. and Ponte Filho, F. C. 1996. Evolução tectônica e classificação da Bacia do Araripe. 4th Simpósio sobre o Cretáceo do Brasil, Águas de São Pedro e São Paulo and Rio Claro, Bulletin, 123133.Google Scholar
Ramos, M. I. F., Rossetti, D. F., and Paz, J. D. S. 2006. Caracterização e significado paleoambiental da fauna de ostracodes da Formação Codó (Neoaptiano), leste da bacia de Grajaú, MA, Brasil. Revista Brasileira de Paleontologia, 9:339348.Google Scholar
Regali, M. S. P. 1990. Biocronoestratigrafia e paleoambiente do Eocretáceo das bacias do Araripe (CE) e Rio do Peixe (PB), NE-Brazil. 1st Simpósio Sobre a Bacia do Araripe e Bacias Interiores do Nordeste, Crato, Minutes, 163172.Google Scholar
Regali, M. S. P., Uesugui, N., and Santos, A. S. 1974. Palinologia dos sedimentos Meso-Cenozóicos do Brasil. Boletim Técnico da PETROBRAS, 17:177191.Google Scholar
Schaller, H. 1969. Revisão estratigráfica da bacia de Sergipe/Alagoas. Boletim Técnico da PETROBRAS, 12:2186.Google Scholar
Scheid, C., Munis, M. B., and Paulino, J. 1978. Projeto Santana—Relatório Final da Etapa II. Companhia de Pesquisa de Recursos Minerais, Superintendência Regional de Recife, Recife, 136 p.Google Scholar
Silva-Telles, A. C. Jr, and Viana, M. S. S. 1990. Paleoecologia dos ostrácodes da Formação Santana (Bacia do Araripe): um estudo ontogenético de populações. 1st Simpósio sobre a bacia do Araripe e bacias interiores do Nordeste, Crato, Minutes, 309328.Google Scholar
Simpson, E. H. 1949. Measurement of diversity. Nature, 163:688.Google Scholar
Smith, R. J. 2000. Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology, 43:6398.Google Scholar
Soares, E. F., Zalán, P. V., Figueiredo, J. J. P., and Trosdtorf, I. Jr. 2007. Bacia do Pará-Maranhão. Boletim de Geociências da Petrobras, 15:321329.Google Scholar
Tsao, L. P. 1959. Harbinia Tsao, 1959. InNechayeva, M. A., Liu, Z. Y., Su, D. Y., Shou, Z. X., Tian, K. Z., and Tsao, L. P.(eds.), Ostracodes of Lower Chalk Deposit of Valley Sunlyao. Monographs of the Institute of Geology (Stratigraphy and Paleontology), Geology Press, Beijing, 1B:B48B49.Google Scholar
Viana, M. S. S., Brito, P. M., and Silva-telles, A. C. Jr. 1989. Paleontologia de uma camada de folhelhos pirobetuminosos do Membro Romualdo, Formação Santana, na mina Pedra Branca, Município de Nova Olinda, Ceará. 11th Congresso Brasileiro de Paleontologia, Curitiba, Anals, 1:207217.Google Scholar
Whatley, R. C. 1983. The Application of Ostracoda to palaeoenvironmental analysis, p. 5177. InMaddocks, R. F.(ed.), Applications of Ostracoda. University of Houston Press, Houston.Google Scholar
Whatley, R. C. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments, p. 103124. InDe Decker, P., Colin, J. P., and Peypouquet, J. P.(eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam.Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon, 21:213251.Google Scholar
Whittaker, R. H. 1977. Evolution of species diversity in land communities, p. 250268. InHecht, M., Steere, W., and Wallace, B.(eds.), Evolutionary Biology, vol. 10. Plenum Press, New York.Google Scholar