Hostname: page-component-5d59c44645-kw98b Total loading time: 0 Render date: 2024-03-01T23:09:58.868Z Has data issue: false hasContentIssue false

Compressive high-frequency waves riding on an Alfvén/ion-cyclotron wave in a multi-fluid plasma

Published online by Cambridge University Press:  09 March 2011

Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, D-37191 Katlenburg-Lindau, Germany (
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, D-37191 Katlenburg-Lindau, Germany (


In this paper, we study the weakly-compressive high-frequency plasma waves which are superposed on a large-amplitude Alfvén wave in a multi-fluid plasma consisting of protons, electrons, and alpha particles. For these waves, the plasma environment is inhomogenous due to the presence of the low-frequency Alfvén wave with a large amplitude, a situation that may apply to space plasmas such as the solar corona and solar wind. The dispersion relation of the plasma waves is determined from a linear stability analysis using a new eigenvalue method that is employed to solve the set of differential wave equations which describe the propagation of plasma waves along the direction of the constant component of the Alfvén wave magnetic field. This approach also allows one to consider weak compressive effects. In the presence of the background Alfvén wave, the dispersion branches obtained differ significantly from the situation of a uniform plasma. Due to compressibility, acoustic waves are excited and couplings between various modes occur, and even an instability of the compressive mode. In a kinetic treatment, these plasma waves would be natural candidates for Landau-resonant wave–particle interactions, and may thus via their damping lead to particle heating.

Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V, Sitenko, A. G. and Stepanov, K. N. 1975 Plasma Electrodynamics:Linear Theory, Vol. 1. New York: Pergamon.Google Scholar
Antonucci, E., Dodero, M. A. and Giordano, S. 2000 Sol. Phys. 197, 115.Google Scholar
Araneda, J. A., Marsch, E. and Viñas, A. F. 2007 J. Geophys. Res. 112, 4104.Google Scholar
Bale, S. D., Kellogg, P. J., Mozer, F. S, Horbury, T. S. and Reme, H. 2005 Phys. Rev. Lett. 94, 215002.Google Scholar
Belcher, J. W. and Davis, L. Jr, 1971 J. Geophys. Res. 76, 3534.Google Scholar
Brodin, G., Shukla, P. K. and Stenflo, L. 2008 J. Plasma Phys. 74, 99.Google Scholar
Bruno, R. and Carbone, V. 2005 Living Rev. Sol. Phys. 2, 4.Google Scholar
Chandran, B. D. G. 2005 Phys. Rev. Lett. 95, 265004.Google Scholar
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. and Germaschewski, K. 2010 Astrophys. J. 720, 503.Google Scholar
Chandran, B. D. G., Quataert, E., Howes, G. G., Xia, Q. and Pongkitiwanichakul, P. 2009 Astrophys. J. 707, 1668.Google Scholar
Coleman, P. J. Jr, 1968 Astrophys. J. 153, 371.Google Scholar
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T. and Nagata, S. 2007 Science 318, 1574.Google Scholar
Galeev, A. A. and Oraevskii, V. N. 1963 Sov. Phys. Dokl. 7, 988.Google Scholar
Gary, S. P., Smith, C. W. and Skoug, R. M. 2005 J. Geophys. Res. 110, 7108.Google Scholar
Goldstein, M. L. 1978 Astrophys. J. 219, 700.Google Scholar
Heuer, M. and Marsch, E. 2007 J. Geophys. Res. 112, 3102.Google Scholar
Hollweg, J. V. and Isenberg, P. A. 2002 J. Geophys. Res. 107, 1147.Google Scholar
Jian, L. K., Russell, C. T., Luhmann, J. G, Strangeway, R. J., Leisner, J. S. and Galvin, A. B. 2009 Astrophys. J. 701, L105.Google Scholar
Kasper, J. C., Lazarus, A. J. and Gary, S. P. 2008 Phys. Rev. Lett. 101, 261103.Google Scholar
Kellogg, P. J., Bale, S. D., Mozer, F. S, Horbury, T. S. and Reme, H. 2006 Astrophys. J. 645, 704.Google Scholar
Kohl, J. L., Noci, G., Cranmer, S. R. and Raymond, J. C. 2006 Astron. Astrophys. Rev. 13, 31.Google Scholar
Lashmore-Davies, C. N. and Stenflo, L. 1979 Plasma Phys. 21, 735.Google Scholar
Lehe, R., Parrish, I. J. and Quataert, E. 2009 Astrophys. J. 707, 404.Google Scholar
Mann, G., Hackenberg, P. and Marsch, E. 1997 J. Plasma Phys. 58, 205.Google Scholar
Marsch, E. 2006 Living Rev. Sol. Phys. 3, 1.Google Scholar
Marsch, E. and Tu, C. 2001 J. Geophys. Res. 106, 8357.Google Scholar
Marsch, E. and Verscharen, D. 2011 J. Plasma Phys., doi: 10.1017/S002237781000054.Google Scholar
Murtaza, G. and Shukla, P. K. 1984 J. Plasma Phys. 31, 423.Google Scholar
Podesta, J. J., Borovsky, J. E. and Gary, S. P. 2010 Astrophys. J. 712, 685.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T and Flannery, B. P. 1992 Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn.New York: Cambridge University Press.Google Scholar
Schwenn, R. and Marsch, E. 1991 Physics of the Inner Heliosphere II: Particles, Waves and Turbulence. Heidelberg: Springer-Verlag.Google Scholar
Sharma, R. P. and Shukla, P. K. 1983 Phys. Fluids 26, 87.Google Scholar
Sonnerup, B. U. Ö. and Su, S.-Y. 1967 Phys. Fluids 10, 462.Google Scholar
Stenflo, L. 1976 Phys. Scr. 14, 320.Google Scholar
Stenflo, L. and Shukla, P. K. 2007 Nolinear processes in space plasmas. In: Handbook of the Solar-Terrestrial Environment (ed. Kamide, Y. and Chian, A. C.-L.). Berlin: Springer, pp. 311329.Google Scholar
Stix, T. H. 1992 Waves in Plasmas. New York: American Institute of Physics.Google Scholar
Tu, C. and Marsch, E. 1994 J. Geophys. Res. 99, 21481.Google Scholar
Tu, C. and Marsch, E. 1995 Space Sci. Rev. 73, 1.Google Scholar
Valentini, F. and Veltri, P. 2009 Phys. Rev. Lett. 102, 225001.Google Scholar
Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S. and Dmitruk, P. 2010 Astrophys. J. Lett. 708, L116.Google Scholar