Hostname: page-component-5db6c4db9b-s6gjx Total loading time: 0 Render date: 2023-03-24T01:20:04.571Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Compton-driven beam formation and magnetization via plasma microinstabilities

Published online by Cambridge University Press:  25 June 2021

Bertrand Martinez*
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal
Thomas Grismayer
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal
Luís O. Silva
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001Lisbon, Portugal
Email address for correspondence:


Compton scattering of gamma rays propagating in a pair plasma can drive the formation of a relativistic electron positron beam. This process is scrutinized theoretically and numerically via particle-in-cell simulations. In addition, we determine in which conditions the beam can prompt a beam-plasma instability and convert its kinetic energy into magnetic energy. We argue that such conditions can be met at the photosphere radius of bright gamma-ray bursts.

Research Article
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B. & LIGO VIRGO Collaboration 2017 Gravitational waves and gamma rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J. 848 (2), L13.CrossRefGoogle Scholar
Acciari, V.A., Ansoldi, S., Antonelli, L.A., Engels, A.A., Baack, D., Babić, A., Banerjee, B., Barres de Almeida, U., Barrio, J.A., González, J.B. & MAGIC Collaboration 2019 Observation of inverse compton emission from a long $\gamma$-ray burst. Nature 575 (7783), 459463.Google Scholar
Arrowsmith, C.D., Shukla, N., Charitonidis, N., Boni, R., Chen, H., Davenne, T., Froula, D.H., Huffman, B.T., Kadi, Y., Reville, B., Richardson, S., Sarkar, S., Shaw, J.L., Silva, L.O., Trines, R.M.G.M., Bingham, R. & Gregori, G. 2020 Generating ultra-dense pair beams using 400 gev/c protons. Phys. Rev. Research 3, 023103.CrossRefGoogle Scholar
Beloborodov, A.M. 2005 Afterglow emission from pair-loaded blast waves in gamma ray bursts. Astrophys. J. 627 (1), 346367.CrossRefGoogle Scholar
Blumenthal, G.R. & Gould, R.J. 1970 Bremsstrahlung, synchrotron radiation, and compton scattering of high energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237270.CrossRefGoogle Scholar
Bret, A. & Alvaro, E.P. 2011 Robustness of the filamentation instability as shock mediator in arbitrarily oriented magnetic field. Phys. Plasmas 18 (8), 080706.CrossRefGoogle Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. 2005 a Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002.CrossRefGoogle ScholarPubMed
Bret, A., Firpo, M.-C. & Deutsch, C. 2005 b Electromagnetic instabilities for relativistic beam-plasma interaction in whole $k$ space: nonrelativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403.CrossRefGoogle ScholarPubMed
Bret, A., Gremillet, L. & Bénisti, D. 2010 Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam–plasma system with Maxwell-Jüttner distribution functions. Phys. Rev. E 81, 036402.CrossRefGoogle ScholarPubMed
Cavallo, G. & Rees, M.J. 1978 A qualitative study of cosmic fireballs and gamma ray bursts. Mon. Not. R. Astron. Soc. 183 (3), 359365.CrossRefGoogle Scholar
Chen, H., Link, A., Sentoku, Y., Audebert, P., Fiuza, F., Hazi, A., Heeter, R.F., Hill, M., Hobbs, L., Kemp, A.J., Kemp, G.E., Kerr, S., Meyerhofer, D.D., Myatt, J., Nagel, S.R., Park, J., Tommasini, R. & Williams, G.J. 2015 The scaling of electron and positron generation in intense laser-solid interactions. Phys. Plasmas 22 (5), 056705.CrossRefGoogle Scholar
Cole, J.M., et al. 2018 Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a Laser-Wakefield accelerated electron beam. Phys. Rev. X 8, 011020.Google Scholar
Del Gaudio, F., Fonseca, R.A., Silva, L.O. & Grismayer, T. 2020 a Plasma wakes driven by photon bursts via compton scattering. Phys. Rev. Lett. 125, 265001.CrossRefGoogle ScholarPubMed
Del Gaudio, F., Grismayer, T., Fonseca, R.A. & Silva, L.O. 2020 b Compton scattering in particle-in-cell codes. J. Plasma Phys. 86 (5), 905860516.CrossRefGoogle Scholar
Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T. & Adam, J.C. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In Computational Science — ICCS 2002 (ed. P. M. A. Sloot, A. G. Hoekstra, C. J. Kenneth Tan & J. J. Dongarra), pp. 342–351. Springer.CrossRefGoogle Scholar
Frederiksen, J.T. 2008 Stochastically induced gamma ray burst wakefield processes. Astrophys. J. 680 (1), L5L8.CrossRefGoogle Scholar
Gruzinov, A. & Mészáros, P. 2000 Photon acceleration in variable ultrarelativistic outflows and high-energy spectra of gamma ray bursts. Astrophys. J. 539 (1), L21L24.CrossRefGoogle Scholar
Haugbølle, T., Frederiksen, J.T. & Nordlund, Å. 2013 photon-plasma: a modern high-order particle-in-cell code. Phys. Plasmas 20 (6), 062904.CrossRefGoogle Scholar
Klein, O. & Nishina, Y. 1928 The scattering of light by free electrons according to Dirac's new relativistic dynamics. Nature 122 (3072), 398399.CrossRefGoogle Scholar
Klepikov, N.P. 1954 Emission of photons or electron-positron pairs in magnetic fields. J. Exp. Theor. Phys. 26, 19.Google Scholar
Kumar, P. & Zhang, B. 2015 The physics of gamma ray bursts and relativistic jets. Phys. Rep. 561, 1109.CrossRefGoogle Scholar
Levinson, A. & Cerutti, B. 2018 Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole. Astron. Astrophys. 616, A184.CrossRefGoogle Scholar
Liang, E., Clarke, T., Henderson, A., Fu, W., Lo, W., Taylor, D., Chaguine, P., Zhou, S., Hua, Y., Cen, X., Wang, X., Kao, J., Hasson, H., Dyer, G., Serratto, K., Riley, N., Donovan, M. & Ditmire, T. 2015 High e+/e- ratio dense pair creation with 10$^21$$^-2$ laser irradiating solid targets. Sci. Rep. 5, 13968.CrossRefGoogle Scholar
Lightman, A.P. 1982 Relativistic thermal plasmas - pair processes and equilibria. Astrophys. J. 253, 842858.CrossRefGoogle Scholar
Lyutikov, M 2006 The electromagnetic model of gamma ray bursts. New J. Phys. 8 (7), 119119.CrossRefGoogle Scholar
Madau, P. & Thompson, C. 2000 Relativistic winds from compact gamma ray sources. I. Radiative acceleration in the klein-nishina regime. Astrophys. J. 534 (1), 239247.CrossRefGoogle Scholar
Martins, S.F., Fonseca, R.A., Silva, L.O. & Mori, W.B. 2009 Ion dynamics and acceleration in relativistic shocks. Astrophys. J. 695 (2), L189L193.CrossRefGoogle Scholar
Medvedev, M.V. & Loeb, A. 1999 Generation of magnetic fields in the relativistic shock of gamma ray burst sources. Astrophys. J. 526 (2), 697706.CrossRefGoogle Scholar
Mehlhaff, J.M., Werner, G.R., Uzdensky, D.A. & Begelman, M.C. 2020 Kinetic beaming in radiative relativistic magnetic reconnection: a mechanism for rapid gamma ray flares in jets. Mon. Not. R. Astron. Soc. 498 (1), 799820.CrossRefGoogle Scholar
Meszaros, P. & Rees, M.J. 1993 Relativistic fireballs and their impact on external matter: models for cosmological gamma ray bursts. Astrophys. J. 405, 278.CrossRefGoogle Scholar
Meszaros, P. & Rees, M.J. 1997 Optical and long wavelength afterglow from gamma ray bursts. Astrophys. J. 476 (1), 232237.CrossRefGoogle Scholar
Molvig, K. 1975 Filamentary instability of a relativistic electron beam. Phys. Rev. Lett. 35, 15041507.CrossRefGoogle Scholar
Narayan, R., Paczynski, B. & Piran, T. 1992 gamma ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83.CrossRefGoogle Scholar
Piran, T. 2005 The physics of gamma ray bursts. Rev. Mod. Phys. 76, 11431210.CrossRefGoogle Scholar
Poder, K., et al. 2018 Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004.Google Scholar
Racusin, J.L., Liang, E.W., Burrows, D.N., Falcone, A., Sakamoto, T., Zhang, B.B., Zhang, B., Evans, P. & Osborne, J. 2009 Jet breaks and energetics of Swift gamma ray burst x-ray afterglows. Astrophys. J. 698 (1), 4374.CrossRefGoogle Scholar
Rees, M.J. & Meszaros, P. 1994 Unsteady outflow models for cosmological gamma ray bursts. Astrophys. J. 430, L93.CrossRefGoogle Scholar
Sampath, A., et al. 2021 Extremely dense gamma ray pulses in electron beam-multifoil collisions. Phys. Rev. Lett. 126, 064801.CrossRefGoogle ScholarPubMed
Sarri, G., Poder, K., Cole, J., Schumaker, W., Di Piazza, A., Reville, B., Doria, D., Dromey, B., Gizzi, L., Green, A., Grittani, G., Kar, S., Keitel, C.H., Krushelnick, K., Kushel, S., Mangles, S., Najmudin, Z., Thomas, A.G.R., Vargas, M. & Zepf, M. 2015 Generation of a neutral, high-density electron-positron plasma in the laboratory. Nat. Commun. 6.CrossRefGoogle Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Dawson, J.M., Mori, W.B. & Medvedev, M.V. 2003 Interpenetrating plasma shells: near-equipartition magnetic field generation and nonthermal particle acceleration. Astrophys. J. 596 (1), L121L124.CrossRefGoogle Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. 2002 On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9 (6), 24582461.CrossRefGoogle Scholar
Spitkovsky, A. 2008 Particle acceleration in relativistic collisionless shocks: fermi process at last? Astrophys. J. 682 (1), L5L8.CrossRefGoogle Scholar
Stern, B.E. 2003 Electromagnetic catastrophe in ultrarelativistic shocks and the prompt emission of gamma ray bursts. Mon. Not. R. Astron. Soc. 345 (2), 590600.CrossRefGoogle Scholar
Thompson, C. & Madau, P. 2000 Relativistic winds from compact gamma ray sources. II. Pair loading and radiative acceleration in gamma ray bursts. Astrophys. J. 538 (1), 105114.CrossRefGoogle Scholar
Uzdensky, D.A. 2011 Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160 (1), 4571.CrossRefGoogle Scholar
Xu, T., Shen, B., Xu, J., Li, S., Yu, Y., Li, J., Lu, X., Wang, C., Wang, X., Liang, X., Leng, Y., Li, R. & Xu, Z. 2016 Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Phys. Plasmas 23 (3), 033109.CrossRefGoogle Scholar
Yang, T.Y.B., Arons, J. & Langdon, A.B. 1994 Evolution of the Weibel instability in relativistically hot electron–positron plasmas. Phys. Plasmas 1 (9), 30593077.CrossRefGoogle Scholar
Zhang, B. & Yan, H. 2010 The internal collision induced magnetic reconnection and turbulence (ICMART) model of gamma ray bursts. Astrophys. J. 726 (2), 90.CrossRefGoogle Scholar