Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T04:58:09.735Z Has data issue: false hasContentIssue false

Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime

Published online by Cambridge University Press:  13 June 2012

Tech-X Corporation, 5621 Arapahoe Ave. Ste. A, Boulder, CO 80303, USA (
Department of Physics and Astronomy, University of Nebraska – Lincoln, NE 68588-0299, USA
CEA, DAM, DIF, Arpajon F-91297, France Centrum voor Plasma-Astrofysica, Departement Wiskunde, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
CEA, DAM, DIF, Arpajon F-91297, France
Department of Physics and Astronomy, University of Nebraska – Lincoln, NE 68588-0299, USA
Laboratoire d'Optique Appliquée, ENSTA, Ecole Polytechnique, CNRS, 91761 Palaiseau, France
CEA, DAM, DIF, Arpajon F-91297, France
Tech-X Corporation, 5621 Arapahoe Ave. Ste. A, Boulder, CO 80303, USA (
Department of Physics and Astronomy, University of Nebraska – Lincoln, NE 68588-0299, USA
Tech-X Corporation, 5621 Arapahoe Ave. Ste. A, Boulder, CO 80303, USA (


Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys.196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys.228(5), 1803–1814) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of two simulations indicates that these are free of numerical artefacts. Both approaches thus retrieve the physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.

Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Andreev, N. E., Gorbunov, L. M., Mora, P. and Ramazashvili, R. R. 2007 Filamentation of ultrashort laser pulses propagating in tenuous plasmas. Phys. Plasmas 14, 083104.CrossRefGoogle Scholar
Birdsall, C. K. and Langdon, A. B. 1985 Plasma Physics via Computer Simulation. New York, NY: McGraw-Hill.Google Scholar
Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M., Welsh, G. H. et al. . 2011 Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867871.CrossRefGoogle Scholar
Clayton, C. E., Ralph, J. E., Albert, F., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W., Marsh, K. A., Martins, S. F., Mori, W. B. et al. . 2010 Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003.CrossRefGoogle ScholarPubMed
Cormier-Michel, E., Shadwick, B. A., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Leemans, W. P. 2008 Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators. Phys. Rev. E 78 (1), 016404.Google ScholarPubMed
Courant, R., Friedrichs, K. and Lewy, H. 1967 On the partial difference equations of mathematical physics. IBM J. Res. Develop. 11, 215234.CrossRefGoogle Scholar
Cowan, B. M., Bruhwiler, D. L., Cary, J. R., Cormier-Michel, E., Esarey, E. and Geddes, C. G. R. in preparation Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations.Google Scholar
Cummings, P. and Thomas, A. G. R. 2011 A computational investigation of the impact of aberrated Gaussian laser pulses on electron beam properties in laser-wakefield acceleration experiments. Phys. Plasmas 18, 053110.CrossRefGoogle Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 12291285.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541.CrossRefGoogle ScholarPubMed
Faure, J., Glinec, Y., Santos, J. J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T. and Malka, V. 2005 Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003.CrossRefGoogle ScholarPubMed
Fourmaux, S., Corde, S., Phuoc, K. T., Lassonde, P., Lebrun, G., Payeur, S., Martin, F., Sebban, S., Malka, V., Rousse, A. et al. . 2011 Single shot phase contrast imaging using laser-produced betatron x-ray beams. Opt. Lett. 36, 24262428.CrossRefGoogle ScholarPubMed
Froula, D. H., Clayton, C. E., Döppner, T., Marsh, K. A., Barty, C. P. J., Divol, L., Fonseca, R. A., Glenzer, S. H., Joshi, C., Lu, W. et al. . 2009 Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator. Phys. Rev. Lett. 103, 215006.CrossRefGoogle Scholar
Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Hörlein, R., Tsakiris, G. D. et al. 2009 Laser-driven soft X-ray undulator source. Nat. Phys. 5, 826829.CrossRefGoogle Scholar
Geddes, C. G. R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D. L., Nieter, C., Cary, J. R. and Leemans, W.P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538.CrossRefGoogle ScholarPubMed
Glinec, Y., Faure, J., Lifschitz, A., Vieira, J. M., Fonseca, R A., Silva, L. O. and Malka, V. 2008 Direct observation of betatron oscillations in a laser-plasma electron accelerator. Europhys. Lett. 81, 64001.CrossRefGoogle Scholar
Gorbunov, L. M., Kalmykov, S. Y. and Mora, P. 2005 Laser wakefield acceleration by petawatt ultrashort laser pulses. Phys. Plasmas 12, 033101.CrossRefGoogle Scholar
Gorbunov, L. M. and Kirsanov, V. I. 1987 Excitation of plasma waves by an electromagnetic wave packet. Sov. Phys. JETP 66, 290294.Google Scholar
Gordienko, S. and Pukhov, A. 2005 Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12 (4), 043109.CrossRefGoogle Scholar
Grüner, F., Becker, S., Schramm, U., Eichner, T., Fuchs, M., Weingartner, R., Habs, D., Meyer-ter-Vehn, J., Geissler, M., Ferrario, M. et al. . 2007 Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 86 (3), 431435.CrossRefGoogle Scholar
Hafz, N. A. M., Jeong, T. M., Choi, I. W., Lee, S. K., Pae, K. H., Kulagin, V. V., Sung, J. H., Yu, T. J., Hong, K.-H., Hosokai, T. et al. . 2008 Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2 (9), 571577.CrossRefGoogle Scholar
Hafz, N. A. M., Lee, S. K., Jeong, T. M. and Lee, J. 2011 Evolution of self-injected quasi-monoenergetic electron beams in a plasma bubble. Nucl. Instrum. Methods A 637, S51S53.CrossRefGoogle Scholar
Hartemann, F. V., Gibson, D. J., Brown, W. J., Rousse, A., Ta Phuoc, K., Malka, V., Faure, J. and Pukhov, A. 2007 Compton scattering x-ray sources driven by laser wakefield acceleration. Phys. Rev. ST Accel. Beams 10 (1), 011301.CrossRefGoogle Scholar
Hidding, B., Königstein, T., Will, O., Rosenzweig, J. B., Nakajima, K. and Pretzler, G. 2011 Laser-plasma-accelerators – a novel, versatile tool for space radiation studies. Nucl. Instrum. Methods A 636, 3140.CrossRefGoogle Scholar
Hockney, R. W. and Eastwood, J. W. 1981 Computer Simulation Using Particles. New York, NY: McGraw-Hill.Google Scholar
Kalmykov, S. Y., Beck, A., Davoine, X., Lefebvre, E. and Shadwick, B. A. 2012 Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime. New J. Phys. 14 (3), 033025.CrossRefGoogle Scholar
Kalmykov, S. Y., Beck, A., Yi, S. A., Khudik, V. N., Downer, M. C., Lefebvre, E., Shadwick, B. A. and Umstadter, D. P. 2011a Electron self-injection into an evolving plasma bubble: quasi-monoenergetic laser-plasma acceleration in the blowout regime. Phys. Plasmas 18 (5), 056704.CrossRefGoogle Scholar
Kalmykov, S. Y., Shadwick, B. A., Beck, A. and Lefebvre, E. 2011b Physics of quasi-monoenergetic laser-plasma acceleration of electrons in the blowout regime. In: Femtosecond-Scale Optics (ed. Andreev, A. V.), pp. 113138. Croatia: InTech.Google Scholar
Kalmykov, S. Y., Yi, S. A., Beck, A., Lifschitz, A. F., Davoine, X., Lefebvre, E., Khudik, V., Shvets, G. and Downer, M. C. 2011c Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble. Plasma Phys. Control. Fusion 53, 014006.CrossRefGoogle Scholar
Kalmykov, S. Y., Yi, S. A., Beck, A., Lifschitz, A. F., Davoine, X., Lefebvre, E., Pukhov, A., Khudik, V., Shvets, G., Reed, S. A. et al. . 2010 Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse. New J. Phys. 12 (4), 045019.CrossRefGoogle Scholar
Kalmykov, S., Yi, S. A., Khudik, V. and Shvets, G. 2009 Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103 (13), 135004.CrossRefGoogle ScholarPubMed
Kärkkäinen, M., Gjonaj, E., Lau, T. and Weiland, T. 2006 Low-dispersion wake field calculation tools. In Proceedings of the 2006 International Computational Accelerator Physics Conference, Chamonix, France, 2006, pp. 3540.Google Scholar
Karsch, S., Osterhoff, J., Popp, A., Rowlands-Rees, T. P., Major, Zs., Fuchs, M., Marx, B., Hörlein, R., Schmid, K., Veisz, L. et al. . 2007 GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New J. Phys. 9 (11), 415.CrossRefGoogle Scholar
Kneip, S., McGuffey, C., Dollar, F., Bloom, M. S., Chvykov, V., Kalintchenko, G., Krushelnick, K., Maksimchuk, A., Mangles, S. P. D., Matsuoka, T. et al. . 2011 X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701.CrossRefGoogle Scholar
Kneip, S., McGuffey, C., Martins, J. L., Martins, S. F., Bellei, C., Chvykov, V., Dollar, F., Fonseca, R., Huntington, C., Kalintchenko, G. et al. . 2010 Bright spatially coherent synchrotron x-rays from a table-top source. Nat. Phys. 6, 980983.CrossRefGoogle Scholar
Kneip, S., Nagel, S. R., Martins, S. F., Mangles, S. P. D., Bellei, C., Chekhlov, O., Clarke, R. J., Delerue, N., Divall, E. J., Doucas, G. et al. . 2009 Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035002.CrossRefGoogle ScholarPubMed
Leemans, W. P., Esarey, E., van Tilborg, J., Michel, P. A., Schroeder, C. B., Toth, C., Geddes, C. G. R. and Shadwick, B. A. 2005 Radiation from laser accelerated electron bunches: coherent terahertz and femtosecond x-rays. IEEE Trans. Plasma Science 33 (1), 822.CrossRefGoogle Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, Cs., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2 (10), 696699.CrossRefGoogle Scholar
Leemans, W. P., Rodgers, D., Catravas, P. E., Geddes, C. G. R., Fubiani, G., Esarey, E., Shadwick, B. A., Donahue, R. and Smith, A. 2001 Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 25102516.CrossRefGoogle Scholar
Lifschitz, A. F., Davoine, X., Lefebvre, E., Faure, J., Rechatin, C. and Malka, V. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys. 228 (5), 18031814.CrossRefGoogle Scholar
Liu, J. S., Xia, C. Q., Wang, W. T., Lu, H. Y., Wang, Ch., Deng, A. H., Li, W. T., Zhang, H., Liang, X. Y., Leng, Y. X. et al. . 2011 All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001.CrossRefGoogle ScholarPubMed
Lontano, M. and Murusidze, I. G. 2003 Dynamics of space-time self-focusing of a femto-second relativistic laser pulse in an underdense plasma. Opt. Express 11, 248258.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F. S., Mori, W. B. and Katsouleas, T. 2006 A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13, 056709.CrossRefGoogle Scholar
Lu, H., Liu, M., Wang, W., Wang, C., Liu, J., Deng, A., Xu, J., Xia, C., Li, W., Zhang, H. et al. . 2011 Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide. Appl. Phys. Lett. 99, 091502.CrossRefGoogle Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.CrossRefGoogle Scholar
Maksimchuk, A., Reed, S., Bulanov, S. S., Chvykov, V., Kalintchenko, G., Matsuoka, T., McGuffey, C., Mourou, G., Naumova, N., Nees, J. et al. . 2008 Studies of laser wakefield structures and electron acceleration in underdense plasmas. Phys. Plasmas 15, 056703.CrossRefGoogle Scholar
Mangles, S. P. D., Genoud, G., Kneip, S., Burza, M., Cassou, K., Cros, B., Dover, N. P., Kamperidis, C., Najmudin, Z., Persson, A. et al. . 2009 Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront. Appl. Phys. Lett. 95, 181106.CrossRefGoogle Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J. et al. . 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535.CrossRefGoogle ScholarPubMed
Mangles, S. P. D., Thomas, A. G. R., Lundh, O., Lindau, F., Kaluza, M. C., Persson, A., Wahlström, C.-G., Krushelnick, K. and Najmudin, Z. 2007 On the stability of laser wakefield electron accelerators in the monoenergetic regime. Phys. Plasmas 14 (5), 056702.CrossRefGoogle Scholar
Martins, S. F., Fonseca, R. A., Lu, W., Mori, W. B. and Silva, L. O. 2010 Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6, 311.CrossRefGoogle Scholar
Mora, P. and Antonsen, T. M. Jr., 1996 Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys. Rev. E 53, R2068–R2071.Google ScholarPubMed
Nerush, E. N. and Kostyukov, I. Y. 2009 Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses. Phys. Rev. Lett. 103, 035001.CrossRefGoogle ScholarPubMed
Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538.CrossRefGoogle Scholar
Oguchi, A., Zhidkov, A., Takano, K., Hotta, E., Nemoto, K. and Nakajima, K. 2008 Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field. Phys. Plasmas 15, 043102.CrossRefGoogle Scholar
Pai, C.-H., Chang, Y.-Y., Ha, L.-C., Xie, Z.-H., Lin, M.-W., Lin, J.-M., Chen, Y.-M., Tsaur, G., Chu, H.-H., Chen, S.-H. et al. . 2010 Generation of intense ultrashort mid-infrared pulses by laser-plasma interaction in the bubble regime. Phys. Rev. A 82, 063804.CrossRefGoogle Scholar
Pollock, B. B., Clayton, C. E., Ralph, J. E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S. H., Herpoldt, K., Lu, W. et al. . 2011 Demonstration of a narrow energy spread, ~0.5GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001.CrossRefGoogle ScholarPubMed
Popp, A., Vieira, J., Osterhoff, J., Major, Zs., Hörlein, R., Fuchs, M., Weingartner, R., Rowlands-Rees, T. P., Marti, M., Fonseca, R. A. et al. . 2010 All-optical steering of laser-wakefield-accelerated electron beams. Phys. Rev. Lett. 105, 215001.CrossRefGoogle ScholarPubMed
Pukhov, A. 1999 Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61 (03), 425433.CrossRefGoogle Scholar
Pukhov, A., an der Brügge, D. and Kostyukov, I. 2010 Relativistic laser plasmas for electron acceleration and short wavelength radiation generation. Plasma Phys. Control. Fusion 52, 124039.CrossRefGoogle Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 2002 Laser wakefield acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.CrossRefGoogle Scholar
Ramanathan, V., Banerjee, S., Powers, N., Cunningham, N., Chandler-Smith, N. A., Zhao, K., Brown, K., Umstadter, D., Clarke, S., Pozzi, S. et al. . 2010 Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams. Phys. Rev. ST Accel. Beams 13, 104701.CrossRefGoogle Scholar
Reed, S. A., Chvykov, V., Kalintchenko, G., Matsuoka, T., Yanovsky, V., Vane, C. R., Beene, J. R., Stracener, D., Schultz, D. R. and Maksimchuk, A. 2007 Efficient initiation of photonuclear reactions using quasimonoenergetic electron beams from laser wakefield acceleration. J. Appl. Phys. 102, 073103.CrossRefGoogle Scholar
Rosenzweig, J. B., Breizman, B., Katsouleas, T. and Su, J. J. 1991 Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189R6192.CrossRefGoogle ScholarPubMed
Rousse, A., TaPhuoc, K. Phuoc, K., Shah, R., Fitour, R. and Albert, F. 2007 Scaling of betatron X-ray radiation. Eur. Phys. J. D 45, 391398.Google Scholar
Rousse, A., TaPhuoc, K. Phuoc, K., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D. et al. . 2004 Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93 (13), 135005.CrossRefGoogle ScholarPubMed
Schlenvoigt, H.-P., Haupt, K., Debus, A., Budde, F., Jäckel, O., Pfotenhauer, S., Gallacher, J. G., Brunetti, E., Shanks, R. P., Wiggins, S. M. et al. ., 2008b Synchrotron radiation from laser-accelerated monoenergetic electrons. IEEE Trans. Plasma Sci. 36 (4), 17731781.CrossRefGoogle Scholar
Schlenvoigt, H.-P., Haupt, K., Debus, A., Budde, F., Jäckel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J. G., Brunetti, E. et al. . 2008a A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4 (2), 130133.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. and Ting, A. 1990 Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41 (8), 44634469.CrossRefGoogle ScholarPubMed
Sun, G.-Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
TaPhuoc, K. Phuoc, K., Burgy, F., Rousseau, J.-P., Malka, V., Rousse, A., Shah, R., Umstadter, D., Pukhov, A. and Kiselev, S. 2005 Laser-based synchrotron radiation. Phys. Plasmas 12 (2), 023101.Google Scholar
Taflove, A. and Hagness, S. C. 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn.Boston, MA: Artech House.Google Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.CrossRefGoogle Scholar
Thomas, A. G. R., Mangles, S. P. D., Murphy, C. D., Dangor, A. E., Foster, P. S., Gallacher, J. G., Jaroszynski, D. A., Kamperidis, C., Krushelnick, K., Lancaster, K. L. et al. ., 2009 Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs. Plasma Phys. Control. Fusion 51, 024010.CrossRefGoogle Scholar
Thomas, A. G. R., Najmudin, Z., Mangles, S. P. D., Murphy, C. D., Dangor, A. E., Kamperidis, C., Lancaster, K. L., Mori, W. B., Norreys, P. A., Rozmus, W. et al. . 2007 Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators. Phys. Rev. Lett. 98 (9), 095004.CrossRefGoogle ScholarPubMed
Tsung, F. S., Lu, W., Tzoufras, M., Mori, W. B., Joshi, C., Vieira, J. M., Silva, L. O. and Fonseca, R. A. 2006 Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25TW lasers. Phys. Plasmas 13 (5), 056708.CrossRefGoogle Scholar
Tsung, F. S., Ren, C., Silva, L. O., Mori, W. B. and Katsouleas, T. 2002 Generation of ultra-intense single-cycle laser pulses by using photon deceleration. Proc. Natl. Acad. Sci. USA. 99, 2932.CrossRefGoogle ScholarPubMed
Vay, J.-L., Geddes, C. G. R., Cormier-Michel, E. and Grote, D. P. 2011 Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame. J. Comput. Phys. 230 (15), 59085929.CrossRefGoogle Scholar
Vieira, J., Fiúza, F., Silva, L. O., Tzoufras, M. and Mori, W. B. 2010 Onset of self-steepening of intense laser pulses in plasmas. New J. Phys. 12, 045025.CrossRefGoogle Scholar
Wiggins, S. M., Issac, R. C., Welsh, G. H., Brunetti, E., Shanks, R. P., Anania, M. P., Cipiccia, S., Manahan, G. G., Aniculaesei, C., Ersfeld, B. et al. . 2010 High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124032.CrossRefGoogle Scholar
Wu, H.-C., Xie, B.-S., Liu, M.-P., Hong, X.-R., Zhang, S. and Yu, M. Y. 2009 Electron trajectories and betatron oscillation in the wake bubble in laser-plasma interaction. Phys. Plasmas 16, 073108.CrossRefGoogle Scholar
Xu, H., Yu, W., Lu, P., Senecha, V. K., He, F., Shen, B., Qian, L., Li, R. and Xu, Z. 2005 Electron self-injection and acceleration driven by a tightly focused intense laser beam in an underdense plasma. Phys. Plasmas 12, 013105.CrossRefGoogle Scholar
Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G. et al. . 2008 Ultra-high intensity 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 21092114.CrossRefGoogle ScholarPubMed
Yee, K. S. 1966 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (3), 302307.Google Scholar
Zagorodnov, I., Schuhmann, R. and Weiland, T. 2003 Long-time numerical computation of electromagnetic fields in the vicinity of a relativistic source. J. Comput. Phys. 191, 525541.CrossRefGoogle Scholar
Zagorodnov, I. and Weiland, T. 2005 TE/TM field solver for particle beam simulations without numerical Cherenkov radiation. Phys. Rev. ST Accel. Beams 8 (4), 042001.CrossRefGoogle Scholar
Zhidkov, A., Koga, J., Hosokai, T., Fujii, T., Oishi, Y., Nemoto, K. and Kodama, R. 2010 Characterization of electron self-injection in laser wakefield acceleration due to the parametric resonance. Phys. Plasmas 17, 083101.CrossRefGoogle Scholar