Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T14:43:46.130Z Has data issue: false hasContentIssue false

Design of a novel high efficiency antenna for helicon plasma sources

Published online by Cambridge University Press:  17 May 2018

S. Fazelpour
Affiliation:
Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, P.O. Box 1439951113, Tehran, Iran
A. Chakhmachi*
Affiliation:
Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, P.O. Box 1439951113, Tehran, Iran
D. Iraji
Affiliation:
Energy Engineering and Physics Department, Amirkabir University of Technology, P.O. Box 1591634311Tehran, Iran
H. Sadeghi
Affiliation:
Energy Engineering and Physics Department, Amirkabir University of Technology, P.O. Box 1591634311Tehran, Iran
*
Email address for correspondence: achakhmachi@aut.ac.ir

Abstract

A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave–particle coupling. As a result, wave–particle energy exchange and the plasma density of helicon plasma sources will be increased.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blackwell, D. D. & Chen, F. F. 1997 Two-dimensional imaging of a helicon discharge. Plasma Sources Sci. Technol. 6, 569.CrossRefGoogle Scholar
Braginskii, O. V., Vasil’eva, A. N. & Kovalev, A. S. 2001 Helicon plasma in a nonuniform magnetic field. Plasma Phys. Rep. 27, 699.Google Scholar
Caneses, J. F. & Blackwell, B. D. 2016 Collisional damping of helicon waves in a high density hydrogen linear plasma device. Plasma Sources Sci. Technol. 25, 055027.Google Scholar
Caneses, J. F., Blackwell, B. D. & Piotrowicz, P. 2017 Helicon antenna radiation patterns in a high-density hydrogen linear plasma device. Phys. Plasmas 24, 113513.Google Scholar
Chen, F. F. 1991 Plasma ionization by helicon waves. Plasma Phys. 33, 339.Google Scholar
Chen, F. F. 1996 Physics of helicon discharges. Phys. Plasmas 3, 1783.Google Scholar
Chen, F. F. 2006 Advanced Plasma Technology (ed. d’Agostino, R., Favia, P., Ikegami, H., Kawai, Y., Sato, N. & Arefi-Khonsari, F.), chap. 6. Wiley-VCH.Google Scholar
Chen, F. F. 2008 Permanent magnet helicon source for ion propulsion. IEEE Trans. Plasma Sci. 36, 2095.Google Scholar
Chen, F. F. 2012 Langmuir probe measurements in the intense RF field of a helicon discharge. Plasma Sources Sci. Technol. 21, 055013.Google Scholar
Chen, G., Arefiev, A. V., Bengtson, R. D., Breizman, B. N., Lee, C. A. & Raja, L. L. 2006 Resonant power absorption in helicon plasma sources. Phys. Plasmas 13, 123507.CrossRefGoogle Scholar
Chen, F. F. & Boswell, R. W. 1997 Helicons-the past decade. IEEE Trans. Plasma Sci. 25, 1245.Google Scholar
Ellingboe, A. R. & Boswell, R. W. 1996 Capacitive, inductive and helicon-wave modes of operation of a helicon plasma source. Phys. Plasmas 3, 2797.CrossRefGoogle Scholar
Guittienne, Ph., Chevalier, E. & Hollenstein, Ch. 2005 Towards an optimal antenna for helicon waves excitation. J. Appl. Phys. 98, 083304.Google Scholar
Guo, X. M., Scharer, J., Mouzouris, Y. & Louis, L. 1999 Helicon experiments and simulations in nonuniform magnetic field configurations. Phys. Plasmas 6, 3400.Google Scholar
Hwang, Y. S., Hong, I. S. & Eom, G. S. 1998 Conceptual design of a helicon ion source for high-current dc accelerators. Rev. Sci. Instrum. 69, 1344.Google Scholar
Lee, C. A., Chen, G., Arefiev, A. V., Bengtson, R. D. & Breizman, B. N. 2011 Measurements and modeling of radio frequency field structures in a helicon plasma. Phys. Plasmas 18, 013501.Google Scholar
Light, M. & Chen, F. F. 1995 Helicon wave excitation with helical antennas. Phys. Plasmas 2, 1084.CrossRefGoogle Scholar
Melazzi, D. & Lancellotti, V. 2015 A comparative study of radiofrequency antennas for Helicon plasma sources. Plasma Sources Sci. Technol. 24, 025024.CrossRefGoogle Scholar
Miljak, D. G. & Chen, F. F. 1998 Helicon wave excitation with rotating antenna fields. Plasma Sources Sci. Technol. 7, 61.Google Scholar
Molvik, A. W., Rognlien, T. D., Byers, J. A., Cohen, R. H., Ellingboe, A. R., Hooper, E. B., McLean, H. S., Stallard, B. W. & Vitello, P. A. 1996 Experiments and modeling of a helicon source. J. Vac. Sci. Technol. A 14, 984.CrossRefGoogle Scholar
Navarro-Cavallé, J., Wijnen, M., Fajardo, P. & Ahedo, E. 2018 Experimental characterization of a 1 kW Helicon Plasma Thruster. Vacuum 149, 69.Google Scholar
Park, B. H., Choi, D. I. & Yoon, N. S. 1997 Theoretical study on helicon plasma discharge. In Proc. of 2nd APPTC (Asia Pacific Plasma Theory Conf.).Google Scholar
Sudit, I. D. & Chen, F. F. 1996 Discharge equilibrium of a helicon plasma. Plasma Sources Sci. Technol. 5, 43.Google Scholar
Tong-Zhen, F. A. N. G., Long, W., Di-Ming, J. & Hou-Xian, Z. 2001 Helicon discharge using a Nagoya type III antenna. Chinese Phys. Lett. 18, 1098.Google Scholar
Xiong, Y. A. N. G., Cheng, M., Dawei, G. U. O., Moge, W. A. N. G. & Xiaokang, L. I. 2017 Characteristics of temporal evolution of particle density and electron temperature in helicon discharge. Plasma Sci. Technol. 19, 105402.Google Scholar
Ziemba, T., Euripides, P., Slough, J., Winglee, R., Giersch, L., Carscadden, J., Schnackenberg, T. & Isley, S. 2006 Plasma characteristics of a high power helicon discharge. Plasma Sources Sci. Technol. 15, 517.Google Scholar