Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-01T23:07:05.130Z Has data issue: false hasContentIssue false

Electromagnetic oscillations and anomalous ion scattering in the helically symmetric multiple-mirror trap

Published online by Cambridge University Press:  12 February 2024

Mikhail S. Tolkachev*
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av. 11, Novosibirsk 630090, Russia
Anna A. Inzhevatkina
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av. 11, Novosibirsk 630090, Russia
Anton V. Sudnikov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av. 11, Novosibirsk 630090, Russia
Ivan S. Chernoshtanov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av. 11, Novosibirsk 630090, Russia
*
Email address for correspondence: M.S.Tolkachev@inp.nsk.su

Abstract

The paper presents an investigation of the plasma fluctuation in the SMOLA helical mirror, which is suspected to be responsible for anomalous scattering. The helical mirror confinement is effective when the ion mean free path is equal to the helix pitch length. This condition can be satisfied in hot collisionless plasma only by anomalous scattering. The wave, which scatters the passing ions, is considered to receive energy from the trapped ions. The oscillations of the electric field in the helically symmetric plasma were observed in experiment. The oscillations have both regular highly correlated and chaotic components. The dependency of the regular component frequency on the Alfvén velocity is linear for $V_{\rm A} < 2.8 \times 10^6\ \text {m}\ \text {s}^{-1}$ and constant for higher values. It is shown experimentally that the condition for the wave to be in phase resonance with the trapped ions is satisfied in a specific region of the plasma column for the highly correlated component. The amplitude of the chaotic component (up to $3\ \text {V}\ \text {cm}^{-1}$) is higher than the estimated electric field required for the ion scattering.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagryansky, P.A., Anikeev, A.V., Denisov, G.G., Gospodchikov, E.D., Ivanov, A.A., Lizunov, A.A., Kovalenko, Y.V., Malygin, V.I., Maximov, V.V., Korobeinikova, O.A., et al. 2015 Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nucl. Fusion 55, 053009.CrossRefGoogle Scholar
Bagryansky, P.A., Beklemishev, A.D. & Postupaev, V.V. 2019 Encouraging results and new ideas for fusion in linear traps. J. Fusion Energy 38, 162181.CrossRefGoogle Scholar
Beklemishev, A.D. 2013 Helicoidal system for axial plasma pumping in linear traps. Fusion Sci. Technol. 63 (1 T), 355357.CrossRefGoogle Scholar
Beklemishev, A., Anikeev, A., Astrelin, V., Bagryansky, P., Burdakov, A., Davydenko, V., Gavrilenko, D., Ivanov, A., Ivanov, I., Ivantsivsky, M., et al. 2013 Novosibirsk project of gas-dynamic multiple-mirror trap. Fusion Sci. Technol. 63 (1 T), 4651.Google Scholar
Beklemishev, A.D. 2016 Radial and axial transport in trap sections with helical corrugation. AIP Conf. Proc. 1771, 040006.CrossRefGoogle Scholar
Budker, G.I., Mirnov, V.V. & Ryutov, D.D. 1971 Influence on corrugation of the magnetic field on the expansion and cooling of a dense plasma. ZhETF Pisma Redaktsiiu 14, 320.Google Scholar
Budker, G.I., Mirnov, V.V. & Ryutov, D.D. 1982 Gas dynamics of a dense plasma in a corrugated magnetic field. In Collection of papers. Presented at International Conference on Plasma Theory, Kiev, 1971 (ed. A. N. Skrinsky), p. 117. Nauka.Google Scholar
Burdakov, A., Azhannikov, A., Astrelin, V., Beklemishev, A., Burmasov, V., Derevyankin, G., Ivanenko, V., Ivanov, I., Ivantsivskiy, M., Kandaurov, I., et al. 2007 Plasma heating and confinement in GOL-3 multimirror trap. Fusion Sci. Technol. 51 (2 T), 106111.CrossRefGoogle Scholar
Burdakov, A.V. & Postupaev, V.V. 2018 Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor. Phys.-Uspekhi 61 (6), 582600.CrossRefGoogle Scholar
Chernoshtanov, I.S. & Ayupov, D.A. 2021 Collisionless particle dynamics in trap sections with helical corrugation. Phys. Plasmas 28, 032502.CrossRefGoogle Scholar
Endrizzi, D., Anderson, J.K., Brown, M., Egedal, J., Geiger, B., Harvey, R.W., Ialovega, M., Kirch, J., Peterson, E., Petrov, Y.V., et al. 2023 Physics basis for the Wisconsin HTS Axisymmetric Mirror (WHAM). J. Plasma Phys. 89 (5), 975890501.CrossRefGoogle Scholar
Gota, H., Binderbauer, M.W., Tajima, T., Putvinski, S., Tuszewski, M., Deng, B.H., Dettrick, S.A., Gupta, D.K., Korepanov, S., Magee, R.M., et al. 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device. Nucl. Fusion 59, 112009.CrossRefGoogle Scholar
Hershkowitz, N., Nelson, B., Pew, J. & Gates, D. 1983 Self-emissive probes. Rev. Sci. Instrum. 54, 2934.CrossRefGoogle Scholar
Ivanov, I.A., Ustyuzhanin, V.O., Sudnikov, A.V. & Inzhevatkina, A.A. 2021 Long-pulse plasma source for SMOLA helical mirror. J. Plasma Phys. 87 (2), 845870201.CrossRefGoogle Scholar
Kim, J.S., Edgell, D.H., Greene, J.M., Strait, E.J. & Chance, M.S. 1999 MHD mode identification of tokamak plasmas from Mirnov signals. Plasma Phys. Control. Fusion 41, 13991420.CrossRefGoogle Scholar
Kotelnikov, I. 2007 New results in the theory of multiple mirror plasma confinement. Fusion Sci. Technol. 51 (2 T), 186188.CrossRefGoogle Scholar
Lichtenberg, A.J. & Lieberman, M.A. 1976 Multiple-mirror confinement with collision-independent scattering. Nucl. Fusion 16, 532534.CrossRefGoogle Scholar
Melnikov, A.V., Eliseev, L.G., Jiménez-Gómez, R., Ascasibar, E., Hidalgo, C., Chmyga, A.A., Komarov, A.D., Kozachok, A.S., Krasilnikov, I.A., Khrebtov, S.M., et al. 2010 Internal measurements of Alfvén eigenmodes with heavy ion beam probing in toroidal plasmas. Nucl. Fusion 50, 084023.CrossRefGoogle Scholar
Miller, T., Be'ery, I., Gudinetsky, E. & Barth, I. 2023 RF plugging of multi-mirror machines. Phys. Plasmas 30, 072510.CrossRefGoogle Scholar
Skovorodin, D., Chernoshtanov, I., Amirov, V., Astrelin, V., Bagryansky, P., Beklemishev, A., Burdakov, A., Gorbovsky, A., Kotelnikov, I., Magommedov, E., et al. 2023 Gas-dynamic multi-mirror trap GDMT. Plasma Phys. Rep. 49 (9), 10391086.CrossRefGoogle Scholar
Sudnikov, A.V., Beklemishev, A.D., Inzhevatkina, A.A., Ivanov, I.A., Postupaev, V.V., Burdakov, A.V., Glinsky, V.V., Kuklin, K.N., Rovenskikh, A.F. & Ustyuzhanin, V.O. 2020 Preliminary experimental scaling of the helical mirror confinement effectiveness. J. Plasma Phys. 86 (5), 905860515.CrossRefGoogle Scholar
Sudnikov, A.V., Beklemishev, A.D., Postupaev, V.V., Burdakov, A.V., Ivanov, I.A., Vasilyeva, N.G., Kuklin, K.N. & Sidorov, E.N. 2017 SMOLA device for helical mirror concept exploration. Fusion Engng Des. 122, 8693.CrossRefGoogle Scholar
Sudnikov, A.V., Beklemishev, A.D., Postupaev, V.V., Ivanov, I.A., Inzhevatkina, A.A., Sklyarov, V.F., Burdakov, A.V., Kuklin, K.N., Rovenskikh, A.F. & Melnikov, N.A. 2019 First experimental campaign on SMOLA helical mirror. Plasma Fusion Res. 14, 2402023.CrossRefGoogle Scholar
Sudnikov, A.V., Ivanov, I.A., Inzhevatkina, A.A., Larichkin, M.V., Lomov, K.A., Postupaev, V.V., Tolkachev, M.S. & Ustyuzhanin, V.O. 2022 a Plasma flow suppression by the linear helical mirror system. J. Plasma Phys. 88 (1), 905880102.CrossRefGoogle Scholar
Sudnikov, A.V., Ivanov, I.A., Inzhevatkina, A.A., Larichkin, M.V., Postupaev, V.V., Sklyarov, V.F., Tolkachev, M.S. & Ustyuzhanin, V.O. 2022 b Helical magnetic mirror performance at up- and downstream directions of the axial force. J. Plasma Phys. 88 (6), 905880609.CrossRefGoogle Scholar
Turner, W.C., Powers, E.J. & Simonen, T.C. 1977 Properties of electrostatic ion-cyclotron waves in a mirror machine. Phys. Rev. Lett. 39, 1733.CrossRefGoogle Scholar
Yakovlev, D., Chen, Z., Bagryansky, P., Bragin, A., Kotelnikov, I., Kuzmin, E., Prikhodko, V., Shikhovtsev, I., Usov, P., Wang, Z., et al. 2022 Conceptual design of the ALIANCE-T mirror experiment. Nucl. Fusion 62 (1), 076017.CrossRefGoogle Scholar