Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-k2tdd Total loading time: 0.47 Render date: 2021-07-26T00:34:19.929Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Electromagnetic zonal flow residual responses

Published online by Cambridge University Press:  03 July 2017

Peter J. Catto
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Felix I. Parra
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Culham Centre for Fusion Energy, Abingdon OX14 3DB, UK
István Pusztai
Affiliation:
Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
Corresponding
E-mail address:

Abstract

The collisionless axisymmetric zonal flow residual calculation for a tokamak plasma is generalized to include electromagnetic perturbations. We formulate and solve the complete initial value zonal flow problem by retaining the fully self-consistent axisymmetric spatial perturbations in the electric and magnetic fields. Simple expressions for the electrostatic, shear and compressional magnetic residual responses are derived that provide a fully electromagnetic test of the zonal flow residual in gyrokinetic codes. Unlike the electrostatic potential, the parallel vector potential and the parallel magnetic field perturbations need not relax to flux functions for all possible initial conditions.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Belli, E. A.2006 Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence. PhD thesis, Princeton University.Google Scholar
Biglari, H., Diamond, P. H. & Terry, P. W. 1990 Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2 (1), 14.CrossRefGoogle Scholar
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20 (7), 719.CrossRefGoogle Scholar
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969983.CrossRefGoogle Scholar
Dimits, A. M., Williams, T. J., Byers, J. A. & Cohen, B. I. 1996 Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett. 77, 7174.CrossRefGoogle ScholarPubMed
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic, 182, 186, 187, and 615–616.Google Scholar
Helander, P. & Sigmar, D. J. 2005 Collisional Transport in Magnetized Plasmas. pp. 126127. Cambridge University Press.Google Scholar
Hinton, F. L. & Rosenbluth, M. N. 1999 Dynamics of axisymmetric $E\times B$ and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41 (3A), A653A662.CrossRefGoogle Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7 (5), 19041910.CrossRefGoogle Scholar
Kagan, G. & Catto, P. J. 2008 Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers. Plasma Phys. Control. Fusion 50 (8), 085010.CrossRefGoogle Scholar
Kagan, G. & Catto, P. J. 2009 Zonal flow in a tokamak pedestal). Phys. Plasmas 16 (5), 056105.CrossRefGoogle Scholar
Monreal, P., Calvo, I., Sánchez, E., Parra, F. I., Bustos, A., Könies, A., Kleiber, R. & Görler, T. 2016 Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths. Plasma Phys. Control. Fusion 58 (4), 045018.CrossRefGoogle Scholar
Rosenbluth, M. N. & Hinton, F. L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724727.CrossRefGoogle Scholar
Shafranov, V. D. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 2, p. 103. Consultants Bureau.Google Scholar
Sugama, H. & Watanabe, T.-H. 2005 Dynamics of zonal flows in helical systems. Phys. Rev. Lett. 94, 115001.CrossRefGoogle ScholarPubMed
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109165.CrossRefGoogle Scholar
Terry, P. W., Pueschel, M. J., Carmody, D. & Nevins, W. M. 2013 The effect of magnetic flutter on residual flow. Phys. Plasmas 20 (11), 112502.CrossRefGoogle Scholar
Winsor, N., Johnson, J. L. & Dawson, J. M. 1968 Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11 (11), 24482450.CrossRefGoogle Scholar
Xiao, Y. & Catto, P. J. 2006a Plasma shaping effects on the collisionless residual zonal flow level. Phys. Plasmas 13 (8), 082307.Google Scholar
Xiao, Y. & Catto, P. J. 2006b Short wavelength effects on the collisionless neoclassical polarization and residual zonal flow level. Phys. Plasmas 13 (10), 102311.Google Scholar
Xiao, Y., Catto, P. J. & Dorland, W. 2007a Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residual. Phys. Plasmas 14 (5), 055910-6.CrossRefGoogle Scholar
Xiao, Y., Catto, P. J. & Molvig, K. 2007b Collisional damping for ion temperature gradient mode driven zonal flow. Phys. Plasmas 14 (3), 032302.CrossRefGoogle Scholar
3
Cited by

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electromagnetic zonal flow residual responses
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Electromagnetic zonal flow residual responses
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Electromagnetic zonal flow residual responses
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *