Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-7rmfg Total loading time: 0.46 Render date: 2022-07-06T13:47:32.828Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue

Manipulation of laser-generated energetic proton spectra in near critical density plasma

Published online by Cambridge University Press:  10 October 2014

Charlotte A. J. Palmer*
Affiliation:
Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
Nicholas P. Dover
Affiliation:
The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
Igor Pogorelsky
Affiliation:
Accelerator Test Facility, Brookhaven National Laboratory, P.O. Box 5000, Upton NY 11973, USA
Matthew J. V. Streeter
Affiliation:
Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany
Zulfikar Najmudin
Affiliation:
The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
*
Email address for correspondence: charlotte.palmer@desy.de

Abstract

We present simulations that demonstrate the production of quasi-monoenergetic proton bunches from the interaction of a CO2 laser pulse train with a near-critical density hydrogen plasma. The multi-pulse structure of the laser leads to a steepening of the plasma density gradient, which the simulations show is necessary for the formation of narrow-energy spread proton bunches. Laser interactions with a long, front surface, scale-length (≫ c/ωp) plasma, with linear density gradient, were observed to generate proton beams with a higher maximum energy, but a much broader spectrum compared to step-like density profiles. In the step-like cases, a peak in the proton energy spectra was formed and seen to scale linearly with the ratio of laser intensity to plasma density.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulanov, S. V. and Esirkepov, T. Z. 2002 Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240247.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. and Pirozhkov, A. S. 2012 Review of laser-driven ion sources and their applications. Rep. Prog. Phys. Phys. Soc. (Great Britain) 75 (5), 056 401.CrossRefGoogle ScholarPubMed
Denavit, J. 1992 Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69 (21), 30523056.CrossRefGoogle ScholarPubMed
Dover, N. P. et al. 2012 Optical probing of shocks driven into overdense plasmas by laser hole-boring. arXiv 1205.4558v, 7–10.Google Scholar
Esirkepov, T., Borghesi, M., Bulanov, S., Mourou, G. and Tajima, T. 2004 Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92 (17), 175 003.CrossRefGoogle ScholarPubMed
Fiuza, F., Stockem, A., Boella, E., Fonseca, R. A., Silva, L. O., Haberberger, D., Tochitsky, S., Gong, C., Mori, W. B. and Joshi, C. 2012 Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109 (21), 215 001.CrossRefGoogle ScholarPubMed
Fonseca, R. A. et al. 2002 OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. Lecture Notes Comput. Sci. 2331, 342351.CrossRefGoogle Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. and Joshi, C. 2012 Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys. 8 (1), 9599.CrossRefGoogle Scholar
Hatchett, S. P. et al. 2000 Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7 (5), 2076.CrossRefGoogle Scholar
Hegelich, B. M., Albright, B. J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R. K. and Fernández, J. C. 2006 Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439 (7075), 441444.CrossRefGoogle ScholarPubMed
Key, M. H. 2007 Status of and prospects for the fast ignition inertial fusion concept. Phys. Plasmas 14 (5), 055 502.CrossRefGoogle Scholar
Macchi, A., Borghesi, M. and Passoni, M. 2013 Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85 (2), 751793.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T. and Cornolti, F. 2005 Laser acceleration of ion bunches at the font surface of overdense plasmas. Phys. Rev. Lett. 94 (16), 165 003.CrossRefGoogle Scholar
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90 (18), 185 002.CrossRefGoogle ScholarPubMed
Najmudin, Z. et al. 2011 Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas 18 (5), 056 705.CrossRefGoogle Scholar
Palmer, C. A. J. et al. 2011 Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106 (1), 014 801.CrossRefGoogle ScholarPubMed
Palmer, C. A. J. et al. 2012 Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108 (22), 225 002.CrossRefGoogle ScholarPubMed
Pogorelsky, I. V. et al. 2012 Ion acceleration by laser hole-boring into plasmas. AIP Conf. Proc. 1507, 814819.Google Scholar
Robinson, A. P. L., Gibbon, P., Zepf, M., Kar, S., Evans, R. G. and Bellei, C. 2009 Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51 (2), 024 004.CrossRefGoogle Scholar
Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G. and Bellei, C. 2008 Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10 (1), 013 021.CrossRefGoogle Scholar
Schreiber, J. et al. 2006 Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97 (4), 045 005.CrossRefGoogle ScholarPubMed
Schwoerer, H., Pfotenhauer, S., Jäckel, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. W. D. and Esirkepov, T. 2006 Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439 (7075), 445448.CrossRefGoogle ScholarPubMed
Silva, L. O., Marti, M., Davies, J. R. and Fonseca, R. A. 2004 Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92 (1), 015 002.CrossRefGoogle ScholarPubMed
Snavely, R A. et al. 2000 Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85 (14), 2945.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnürer, M., Sokollik, T., Nickles, P. V., Sandner, W., Reiss, H. R., Stein, J., Habs, D., Nakamura, T. and Mima, K. 2008 Proton acceleration in the electrostatic sheaths of hot electrons governed by strongly relativistic laser-absorption processes. Phys. Rev. E 77 (1), 016 403.CrossRefGoogle Scholar
Toncian, T. et al. 2006 Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science (New York, N.Y.) 312 (5772), 410413.CrossRefGoogle ScholarPubMed
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69 (9), 13831386.CrossRefGoogle ScholarPubMed
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. and Snavely, R. A. 2001 Energetic proton generation in ultra-intense lasersolid interactions. Phys. Plasmas 8 (2), 542.CrossRefGoogle Scholar
Zhang, X., Shen, B., Yu, M. Y., Li, X., Jin, Z., Wang, F. and Wen, M. 2007 Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser. Phy. Plasmas 14 (11), 113 108. CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Manipulation of laser-generated energetic proton spectra in near critical density plasma
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Manipulation of laser-generated energetic proton spectra in near critical density plasma
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Manipulation of laser-generated energetic proton spectra in near critical density plasma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *