Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T08:05:15.241Z Has data issue: false hasContentIssue false

Modelling a thrust imparted by a highly ionized magnetic nozzle rf plasma thruster

Published online by Cambridge University Press:  07 March 2024

Kazunori Takahashi*
Affiliation:
Department of Electrical Engineering, Tohoku University, Sendai 980-8579, Japan National Institute for Fusion Science, Toki 509-5292, Japan
*
Email address for correspondence: kazunori.takahashi.e8@tohoku.ac.jp

Abstract

Influence of the local-ionization-induced neutral depletion on the thrust imparted by the magnetic nozzle plasma thruster is discussed by simply considering reduction of the neutral density due to the ionization in the thruster model combining the global source model and the one-dimensional magnetic nozzle model. When increasing the rf power, it is shown that the increase rate of the plasma density is reduced, while the electron temperature continues to increase due to a decrease in the neutral density. Since the major components of the thrust are originated from the electron pressures in the source and in the magnetic nozzle, the increase in the electron temperature contributes to the increase in the thrust in addition to the gradual density increase by the rf power. The model qualitatively predicts the reduction of the thruster efficiency by the neutral depletion for the high-power condition, compared with the constant neutral density model.

Keywords

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahedo, E. & Merino, M. 2010 Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Phys. Plasmas 17 (7), 073501.Google Scholar
Ahedo, E. & Navarro-Cavallé, J. 2013 Helicon thruster plasma modeling: two-dimensional fluid-dynamics and propulsive performances. Phys. Plasmas 20 (4), 043512.Google Scholar
Arefiev, A.V. & Breizman, B.N. 2005 Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle. Phys. Plasmas 12 (4), 043504.Google Scholar
Boswell, R.W. 1984 Very efficient plasma generation by whistler waves near the lower hybrid frequency. Plasma Phys. Control. Fusion 26 (10), 1147.Google Scholar
Boswell, R.W., Takahashi, K., Charles, C. & Kaganovich, I.D. 2015 Non-local electron energy probability function in a plasma expanding along a magnetic nozzle. Front. Phys. 3, 14.Google Scholar
Charles, C. 2009 Plasmas for spacecraft propulsion. J. Phys. D: Appl. Phys. 42 (16), 163001.Google Scholar
Charles, C. & Boswell, R. 2003 Current-free double-layer formation in a high-density helicon discharge. Appl. Phys. Lett. 82 (9), 13561358.CrossRefGoogle Scholar
Chen, R.T.S. & Hershkowitz, N. 1998 Multiple electron beams generated by a helicon plasma discharge. Phys. Rev. Lett. 80, 46774680.Google Scholar
Cohen, S.A., Siefert, N.S., Stange, S., Boivin, R.F., Scime, E.E. & Levinton, F.M. 2003 Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device. Phys. Plasmas 10 (6), 25932598.Google Scholar
Emoto, K., Takahashi, K. & Takao, Y. 2021 Axial momentum gains of ions and electrons in magnetic nozzle acceleration. Plasma Sources Sci. Technol. 30 (11), 115016.Google Scholar
Fruchtman, A. 2006 Electric field in a double layer and the imparted momentum. Phys. Rev. Lett. 96, 065002.Google Scholar
Fruchtman, A. 2008 Neutral depletion in a collisionless plasma. IEEE Trans. Plasma Sci. 36 (2), 403413.CrossRefGoogle Scholar
Fruchtman, A., Makrinich, G., Chabert, P. & Rax, J.M. 2005 Enhanced plasma transport due to neutral depletion. Phys. Rev. Lett. 95, 115002.Google Scholar
Fruchtman, A., Takahashi, K., Charles, C. & Boswell, R.W. 2012 A magnetic nozzle calculation of the force on a plasma. Phys. Plasmas 19 (3), 033507.Google Scholar
Gilland, J., Breun, R. & Hershkowitz, N. 1998 Neutral pumping in a helicon discharge. Plasma Sources Sci. Technol. 7 (3), 416.Google Scholar
Hooper, E.B. 1993 Plasma detachment from a magnetic nozzle. J. Propul. Power 9 (5), 757763.Google Scholar
Kim, J.Y., Chung, K.-J., Takahashi, K., Merino, M. & Ahedo, E. 2023 Kinetic electron cooling in magnetic nozzles: experiments and modeling. Plasma Sources Sci. Technol. 32 (7), 073001.Google Scholar
Kim, J.Y., Chung, K.S., Kim, S., Ryu, J.H., Chung, K.-J. & Hwang, Y.S. 2018 Thermodynamics of a magnetically expanding plasma with isothermally behaving confined electrons. New J. Phys. 20 (6), 063033.Google Scholar
Kim, J.Y., Kim, D.-H., Kim, J.H., Jeon, S.-B., Cho, S.-W. & Chung, C.-W. 2014 Power dependence of electron density at various pressures in inductively coupled plasmas. Phys. Plasmas 21 (11), 113505.Google Scholar
Kim, J.Y., Kim, Y.-C., Kim, Y.-S. & Chung, C.-W. 2015 Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas. Phys. Plasmas 22 (1), 013501.Google Scholar
Lafleur, T. 2014 Helicon plasma thruster discharge model. Phys. Plasmas 21 (4), 043507.Google Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn, chap. 10. John Wiley & Sons.Google Scholar
Little, J.M. & Choueiri, E.Y. 2016 Electron cooling in a magnetically expanding plasma. Phys. Rev. Lett. 117, 225003.Google Scholar
Little, J.M. & Choueiri, E.Y. 2019 Electron demagnetization in a magnetically expanding plasma. Phys. Rev. Lett. 123, 145001.Google Scholar
Longmier, B.W., Squire, J.P., Olsen, C.S., Cassady, L.D., Ballenger, M.G., Carter, M.D., Ilin, A.V., Glover, T.W., McCaskill, G.E., Chang Díaz, F.R., et al. 2014 Improved efficiency and throttling range of the vx-200 magnetoplasma thruster. J. Propul. Power 30 (1), 123132.Google Scholar
Magee, R.M., Galante, M.E., Carr, J., Lusk, G., McCarren, D.W. & Scime, E.E. 2013 Neutral depletion and the helicon density limit. Phys. Plasmas 20 (12), 123511.Google Scholar
Mazouffre, S. 2016 Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Sci. Technol. 25 (3), 033002.Google Scholar
Merino, M. & Ahedo, E. 2014 Plasma detachment in a propulsive magnetic nozzle via ion demagnetization. Plasma Sources Sci. Technol. 23 (3), 032001.CrossRefGoogle Scholar
Plihon, N., Chabert, P. & Corr, C.S. 2007 Experimental investigation of double layers in expanding plasmas. Phys. Plasmas 14 (1), 013506.Google Scholar
Takahashi, K. 2019 Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles. Rev. Mod. Plasma Phys. 3, 3.Google Scholar
Takahashi, K. 2022 Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster. Sci. Rep. 12, 18618.CrossRefGoogle Scholar
Takahashi, K. & Ando, A. 2017 Laboratory observation of a plasma-flow-state transition from diverging to stretching a magnetic nozzle. Phys. Rev. Lett. 118, 225002.Google Scholar
Takahashi, K., Charles, C., Boswell, R. & Ando, A. 2018 Adiabatic expansion of electron gas in a magnetic nozzle. Phys. Rev. Lett. 120, 045001.Google Scholar
Takahashi, K., Charles, C. & Boswell, R.W. 2013 Approaching the theoretical limit of diamagnetic-induced momentum in a rapidly diverging magnetic nozzle. Phys. Rev. Lett. 110, 195003.Google Scholar
Takahashi, K., Charles, C. & Boswell, R.W. 2022 Wave-driven electron inward transport in a magnetic nozzle. Sci. Rep. 12, 20137.Google Scholar
Takahashi, K., Charles, C., Boswell, R.W. & Ando, A. 2020 a Thermodynamic analogy for electrons interacting with a magnetic nozzle. Phys. Rev. Lett. 125, 165001.Google Scholar
Takahashi, K., Charles, C., Boswell, R.W. & Fujiwara, T. 2011 a Electron energy distribution of a current-free double layer: Druyvesteyn theory and experiments. Phys. Rev. Lett. 107, 035002.Google Scholar
Takahashi, K., Charles, C., Boswell, R.W., Kaneko, T. & Hatakeyama, R. 2007 Measurement of the energy distribution of trapped and free electrons in a current-free double layer. Phys. Plasmas 14 (11), 114503.Google Scholar
Takahashi, K., Chiba, A., Komuro, A. & Ando, A. 2015 Axial momentum lost to a lateral wall of a helicon plasma source. Phys. Rev. Lett. 114, 195001.Google Scholar
Takahashi, K., Chiba, A., Komuro, A. & Ando, A. 2016 a Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster. Plasma Sources Sci. Technol. 25 (5), 055011.Google Scholar
Takahashi, K., Lafleur, T., Charles, C., Alexander, P. & Boswell, R.W. 2011 b Electron diamagnetic effect on axial force in an expanding plasma: experiments and theory. Phys. Rev. Lett. 107, 235001.Google Scholar
Takahashi, K., Sugawara, T. & Ando, A. 2020 b Spatial measurement of axial and radial momentum fluxes of a plasma expanding in a magnetic nozzle. New J. Phys. 22 (7), 073034.Google Scholar
Takahashi, K., Takao, Y. & Ando, A. 2016 b Neutral-depletion-induced axially asymmetric density in a helicon source and imparted thrust. Appl. Phys. Lett. 108 (7), 074103.Google Scholar
Zhang, T., Cui, R., Zhu, W., Yuan, Q., Ouyang, J., Jiang, K., Zhang, H., Wang, C. & Chen, Q. 2021 Influence of neutral depletion on blue core in argon helicon plasma. Phys. Plasmas 28 (7), 073505.Google Scholar
Zhang, Y., Charles, C. & Boswell, R. 2016 Thermodynamic study on plasma expansion along a divergent magnetic field. Phys. Rev. Lett. 116, 025001.Google Scholar