Published online by Cambridge University Press: 03 July 2019
The Van Kampen normal-mode method is applied in a comprehensive study of the linear wave perturbations of a homogeneous, magnetized and finite-temperature plasma, described by the collisionless Vlasov–Maxwell system in its non-relativistic version. The analysis considers a stable, Maxwellian background, but is otherwise completely general in that it allows for arbitrary wave propagation direction relative to the equilibrium magnetic field, multiple plasma species and general polarization states of the perturbed electromagnetic fields. A convenient formulation is introduced whereby the generator of the time advance is a Hermitian operator, analogous to the Hamiltonian in the Schrödinger equation of quantum mechanics. This guarantees a real frequency spectrum and complete bases of normal modes. Expansions in these normal-mode bases yield immediately the solutions of initial-value problems for general initial conditions. With standard initial conditions and propagation direction parallel to the equilibrium magnetic field, all the familiar results obtained following Landau’s Laplace transform approach are recovered. Considering such parallel propagation, the present work shows also explicitly and provides an example of how to construct special initial conditions that result in different, damped but otherwise arbitrarily prescribed time variations of the macroscopic variables. The known dispersion relations for perpendicular propagation are also recovered.
Please note a has been issued for this article.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.