Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-02T08:02:14.523Z Has data issue: false hasContentIssue false

On nonlinear Alfvén-cyclotron waves in multi-species plasma

Published online by Cambridge University Press:  24 September 2010

ECKART MARSCH
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, D-37191 Katlenburg-Lindau, Germany (marsch@linmpi.mpg.de)
DANIEL VERSCHAREN
Affiliation:
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Straße 2, D-37191 Katlenburg-Lindau, Germany (marsch@linmpi.mpg.de)

Abstract

Large-amplitude Alfvén waves are ubiquitous in space plasmas and a main component of magnetohydrodynamic (MHD) turbulence in the heliosphere. As pump waves, they are prone to parametric instability by which they can generate cyclotron and acoustic daughter waves. Here, we revisit a related process within the framework of the multi-fluid equations for a plasma consisting of many species. The nonlinear coupling of the Alfvén wave to acoustic waves is studied, and a set of compressive and coupled-wave equations for the transverse magnetic field and longitudinal electric field is derived for waves propagating along the mean-field direction. It turns out that slightly compressive Alfvén waves exert, through induced gyro-radius and kinetic-energy modulations, an electromotive force on the particles in association with a longitudinal electric field, which has a potential that is given by the gradient of the transverse kinetic energy of the particles gyrating about the mean field. This in turn drives electric fluctuations (sound and ion-acoustic waves) along the mean magnetic field, which can nonlinearly react back on the transverse magnetic field. Mutually coupled Alfvén-cyclotron--acoustic waves are thus excited, a nonlinear process that can drive a cascade of wave energy in the plasma, and may generate compressive microturbulence. These driven electric fluctuations might have consequences for the dissipation of an MHD turbulence and, thus, for the heating and acceleration of particles in the solar wind.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araneda, J. A. 1998 Phys. Scripta T 75, 164.Google Scholar
Araneda, J. A., Maneva, Y. and Marsch, E. 2009 Phys. Rev. Lett. 102, 175001.Google Scholar
Araneda, J. A., Marsch, E. and F.-Viñas, A. 2008 Phys. Rev. Lett. 100, 125003.Google Scholar
Araneda, J. A., Marsch, E. and Viñas, A. F. 2007 J. Geophys. Res. 112, 4104.Google Scholar
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. and Reme, H. 2005 Phys. Rev. Lett. 94, 215002.Google Scholar
Brodin, G. and Stenflo, L. 1988 Physica Scripta 37, 89.Google Scholar
Bruno, R. and Carbone, V. 2005 Living Rev. Sol. Phys. 2, 4.Google Scholar
Cranmer, S. R. 2009 Living Rev. Sol. Phys. 6, 3.Google Scholar
Davidson, R. C. 1983 In: Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics, Vol. 1 (ed. Galeev, A. A. and Sudan, R. N.). Amsterdam, The Netherlands: North-Holland, p. 229.Google Scholar
Derby, N. F. Jr., 1978 Astrophys. J. 224, 1013.Google Scholar
Goldstein, M. L. 1978 Astrophys. J. 219, 700.Google Scholar
Goossens, M., ed. 2003 An Introduction to Plasma Astrophysics and Magnetohydrodynamics vol. 294 of Astrophysics and Space Science Library. Dordecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Hackenberg, P., Mann, G. and Marsch, E. 1998 J. Plasma Phys. 60, 845.Google Scholar
Heuer, M. and Marsch, E. 2007 J. Geophys. Res. 112, 3102.Google Scholar
Hollweg, J. V. 1994 J. Geophys. Res. 99, 23431.Google Scholar
Hollweg, J. V., Esser, R. and Jayanti, V. 1993 J. Geophys. Res. 98, 3491.Google Scholar
Inhester, B. 1990 J. Geophys. Res. 95, 10525.Google Scholar
Jian, L. K., Russell, C. T., Luhmann, J. G., Strangeway, R. J., Leisner, J. S. and Galvin, A. B. 2009 Astrophys. J. Lett. 701, L105.Google Scholar
Kellogg, P. J., Bale, S. D., Mozer, F. S., Horbury, T. S. and Reme, H. 2006 Astrophys. J. 645, 704.Google Scholar
Longtin, M. and Sonnerup, B. U. O. 1986 J. Geophys. Res. 91, 6816.Google Scholar
Marsch, E. 2006 Living Rev. Sol. Phys. 3, 1.Google Scholar
Marsch, E. and Tu, C. 2001 J. Geophys. Res. 106, 8357.Google Scholar
McKenzie, J. F., Marsch, E., Baumgaertel, K. and Sauer, K. 1993 Ann. Geophys. 11, 341.Google Scholar
Medvedev, M. V., Diamond, P. H., Shevchenko, V. I. and Galinsky, V. L. 1997 Phys. Rev. Lett. 78, 4934.Google Scholar
Ruderman, M. S. and Simpson, D. 2004 J. Plasma Phys. 70, 143.Google Scholar
Sonnerup, B. U. Ö. and Su, S. 1967 Phys. Fluids 10, 462.Google Scholar
Spangler, S. R. 1989 Phys. Fluids B 1, 1738.Google Scholar
Stenflo, L. 1976 Physica Scripta 14, 320.Google Scholar
Stenflo, L. and Shukla, P. K. 2000 Journal of Plasma Physics 64, 353.Google Scholar
Stenflo, L. and Shukla, P. K. 2007 In: Handbook of the Solar-Terrestrial Environment (eds. Kamide, Y. and Chian, A. C.-L.), pp. 311–329.Google Scholar
Tu, C. and Marsch, E. 1995 Space Sci. Rev. 73, 1.Google Scholar
Valentini, F. and Veltri, P. 2009 Phys. Rev. Lett. 102, 225001.Google Scholar
Valentini, F., Veltri, P., Califano, F. and Mangeney, A. 2008 Phys. Rev. Lett. 101, 025006.Google Scholar
Viñas, A. F. and Goldstein, M. L. 1991 a J. Plasma Phys. 46, 129.Google Scholar
Viñas, A. F. and Goldstein, M. L. 1991 b J. Plasma Phys. 46, 107.Google Scholar
Wong, H. K. and Goldstein, M. L. 1986 J. Geophys. Res. 91, 5617.Google Scholar