Skip to main content Accessibility help
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.667 Render date: 2022-08-19T09:32:40.309Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect

Published online by Cambridge University Press:  24 January 2012

Department of Physics and Technology, University of Tromsø, Nordlysobservatoriet, 9037 Tromsø, Norway (
Department of Physics and Technology, University of Tromsø, Nordlysobservatoriet, 9037 Tromsø, Norway ( University Centre at Svalbard (UNIS), Pb. 156, 9171 Longyearbyen, Norway
Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway


Recent numerical studies of the Polar Mesosphere Summer Echo (PMSE) Overshoot Effect predict the basic shape of the Overshoot Characteristic Curve (OCC) to undergo dramatic changes as the frequency of the radar decreases. Principally, this may render earlier modeling, which assumed near-instantaneous diffusion of electrons and ions, moot and exacerbate algebraic analysis of OCC obtained in the future with, e.g. the MORRO-radar (56 MHz) and a synchronized radio wave emitter, both at or near the European Incoherent Scatter (EISCAT) Scientific Association's site in Ramfjordmoen near Tromsø, Norway. Since, however, by far the most observational results on the PMSE Overshoot Effect have been assembled with the help of the Very High Frequency (VHF, 224 MHz) radar and the an Ultra High Frequency (UHF, 929 MHz) radar, both at the EISCAT site, we examine more closely whether near-instantaneous diffusion is a valid assumption for these particular frequencies. We show that, indeed, the earlier less complex and analytically more accessible model can still be considered sufficient for most, if not all, existing experimental data.

Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Backhouse, T. W. 1885 The luminous cirrus cloud of June and July. Meteorol. Mag. 20, 133.Google Scholar
[2]Balsiger, F., Kopp, E., Friedrich, M., Torkar, K. M., Wälchli, U. and Witt, G. 1996 Positive ion depletion in a noctilucent cloud. Geophys. Res. Lett. 23, 9396.CrossRefGoogle Scholar
[3]Balsley, B. B., Ecklund, W. L. and Fritts, D. C. 1983 VHF echoes from high-latitude mesosphere and lower thermosphere observations and interpretations. J. Atmos. Sci. 40, 2451.2.0.CO;2>CrossRefGoogle Scholar
[4]Belova, E., Chilson, P., Kirkwood, S. and Rietveld, M. T. 2003 The response time of PMSE to ionospheric heating. J. Geophys. Res. 108, 8446.CrossRefGoogle Scholar
[5]Belova, E. G., Pashin, A. B. and Lyatsky, W. B. 1995 Passage of powerful HF radio wave through the ionosphere as a function of initial electron density profiles. J. Atmos. Terr. Phys. 57, 265272.CrossRefGoogle Scholar
[6]Belova, E., Kirkwood, S., Ekeberg, J., Osepian, A., Häggström, I., Nilsson, H. and Rietveld, M. T. 2005 The dynamical background of polar mesosphere winter echoes from simultaneous EISCAT and ESRAD observations. Ann. Geophys. 23, 1239.CrossRefGoogle Scholar
[7]Belova, E., Smirnova, M., Rietveld, M. T., Isham, B., Kirkwood, S. and Sirgienko, T. 2008 First observation of the overshoot effect for polar mesospheric winter echoes during radio wave electron temperature modulation. Geophys. Res. Lett. 35, L03110.CrossRefGoogle Scholar
[8]Berger, U. and Von Zahn, U. 2002 Icy particles in the summer mesopause region: 3-d modelling of their environment and 2-d modelling of their transport. J. Geophys. Res. 107, 1366.CrossRefGoogle Scholar
[9]Biebricher, A. and Havnes, O. 2012 Non-equilibrium modeling of the PMSE overshoot effect revisited: a comprehensive study. J. Plasma Phys. 78, 303319.CrossRefGoogle Scholar
[10]Biebricher, A., Havnes, O., Hartquist, T. W. and LaHoz, C. 2006 On the influence of plasma absorption by dust on the PMSE overshoot effect. Adv. Space. Res. 38, 25412550.CrossRefGoogle Scholar
[11]Blix, T. A. 1999 Small-scale plasma and charged aerosol variations and their importance for polar mesopheric summer echoes. Adv. Space. Res. 24, 537.CrossRefGoogle Scholar
[12]Blix, T. A., Rapp, M. and Lübken, F. J. 2003 Relations between small scale electron number density fluctuations, radar backscatter and charged aerosol particles. J. Geophys. Res. 108, D8.CrossRefGoogle Scholar
[13]Brasseur, G. and Solomon, S. 1995 Aeronomy of the Middle Atmosphere. Boston, MA: D. Reidel.Google Scholar
[14]Brattli, A., Blix., T. A., Lie-Svendsen, Ø., Hoppe, U.-P., Lübken, F.-J., Rapp, M., Singer, W., Latteck, R. and Friedrich, M. 2006 Rocket measurements of positive ions during polar mesosphere winter echo conditions. Atmos. Chem. Phys. 6, 5515.CrossRefGoogle Scholar
[15]Brattli, A., Lie-Svendsen, Ø., Svenes, K., Hoppe, U.-P., Strelnikova, I., Rapp, M., Latteck, R. and Friedrich, M. 2009 The ECOMA 2007 campaign: rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer. Ann. Geophys. 27, 781796.CrossRefGoogle Scholar
[16]Bremer, J., Hoffmann, P., Latteck, R. and Singer, W. 2003 Seasonal and long-term variation of PMSE from VHF radar observations at Andenes, Norway. J. Geophys. Res. 108 (D8), 8438.CrossRefGoogle Scholar
[17]Bremer, J., Hoffmann, P., Manson, A., Meek, C., Rüster, R. and Singer, W. 1996 PMSE observations at three different frequencies in northern Europe during summer 1994. Ann. Geophys. 14, 13171327.CrossRefGoogle Scholar
[18]Chen, C. and Scales, W. A. 2005 Electron temperature enhancement effects on plasma irregularities associated with charged dust in the earth's mesosphere. J. Geophys. Res. 110, A12313.CrossRefGoogle Scholar
[19]Chen, C. and Scales, W. A. 2007 Active perturbation of dust-associated electron irregularities in the earth's mesosphere: discrete-charging effects. IEEE Trans. Plasma Sci. 35, 731735.CrossRefGoogle Scholar
[20]Chilson, P. B., Belova, E., Rietveld, M. T., Kirkwood, S. and Hoppe, U. P. 2000 First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett. 27, 3801.CrossRefGoogle Scholar
[21]Cho, J. Y. N., Alcala, C. M., Kelley, M. C. and Swartz, W. E. 1996 Further effects of charged aerosols on summer mesospheric radar scatter. J. Atmos. Terr. Phys. 58, 661.CrossRefGoogle Scholar
[22]Cho, J. Y. N. and Kelley, M. C. 1992 Enhancement of Thomson scatter by charged aerosols in the polar mesosphere: measurements with a 1.29 GHz radar. Geophys. Res. Lett. 19, 10971100.CrossRefGoogle Scholar
[23]Cho, J. Y. N. and Kelley, M. C. 1993 Polar mesosphere summer radar echoes. Rev. Geophys. 31, 243265.CrossRefGoogle Scholar
[24]Cho, J. Y. N. and Röttger, J. 1997 An updated review of polar mesospheric summer echoes: observations, theory and their relationship to noctilucent clouds and subvisible aerosols. J. Geophys. Res. 102, 2001.CrossRefGoogle Scholar
[25]Czechowsky, P., Reid, I. M., Rüster, R. and Schmidt, G. 1989 VHF radar echoes observed in the summer and winter polar mesosphere over Andøya, Norway. J. Geophys. Res. 94, 5199.CrossRefGoogle Scholar
[26]Dimant, Y. S. and Milikh, G. M. 2004 Effect of radio wave heating on polar mesospheric clouds. Adv. Space. Res. 34 (11), 2413.CrossRefGoogle Scholar
[27]Draine, B. T. and Sutin, B. 1987 Collisional charging of interstellar grains. Astrophys. J. 320, 803.CrossRefGoogle Scholar
[28]Ecklund, W. L. and Balsley, B. B. 1981 Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res. 86, 7775.CrossRefGoogle Scholar
[29]Eremenko, M. N., Petelina, S. V., Zasetsky, A. Y., Karlsson, B., Rinsland, C. P., Llewellyn, E. J. and Sloan, J. J. 2005 Shape and composition of PMC particles derived from satellite remote sensing measurements. Geophys. Res. Lett. 32, L16S06.CrossRefGoogle Scholar
[30]Friedrich, M. and Rapp, M. 2009 News from the lower ionosphere: a review of recent developments. Surv. Geophys. 30, 525559.CrossRefGoogle Scholar
[31]Friedrich, M., Torkar, K. M., Singer, W., Strelnikova, I., Rapp, M. and Robertson, S. 2009 Signatures of mesospheric particles in ionospheric data. Ann. Geophys. 27, 823829.CrossRefGoogle Scholar
[32]Fritts, D. C. and Alexander, M. J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003.CrossRefGoogle Scholar
[33]Gadsden, M. and Schröder, W. 2003 Noctilucent Clouds. New York: Springer-Verlag.Google Scholar
[34]Garcia, R. R. 1989 Dynamics, radiation, and photochemistry in the mesosphere: implications for the formation of noctilucent clouds. J. Geophys. Res. 94, 1460514615.CrossRefGoogle Scholar
[35]Ginsburg, V. L. 1964 The Propagation of Electromagnetic Waves in Plasmas. Oxford, UK: Pergamon Press.Google Scholar
[36]Goldberg, R., Kopp, E., Witt, G. and Swartz, W. 1993 An overview of NLC-91: a rocket/radar study of the polar summer mesosphere. Geophys. Res. Lett. 20, 24432446.CrossRefGoogle Scholar
[37]Goldberg, R., Pfaff, R., Holzworth, R., Schmidlin, F., Voss, H., Tuzzolino, A., Croskey, C., Mitchell, J., Friedrich, M., Murtagh, D., et al. 2001 DROPPS: a study of the polar summer mesosphere with rocket, radar and lidar. Geophys. Res. Lett. 28, 14071410.CrossRefGoogle Scholar
[38]Gurevich, A. V. 1978 Nonlinear Phenomena in the Ionosphere. New York: Springer-Verlag.CrossRefGoogle Scholar
[39]Hale, B. N. and Plummer, P. L. M. 1974 Molecular model for ice clusters in supersaturated vapor. J. Chem. Phys. 61, 4012.CrossRefGoogle Scholar
[40]Hargreaves, J. K. 1992 The Solar-Terrestrial Environment. An Introduction to Geospace – the Science of the Terrestrial Upper Atmosphere, Ionosphere and Magnetosphere. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
[41]Havnes, O. 2004 Polar mesospheric summer echoes (PMSE) overshoot effect due to cycling of artificial electron heating. J. Geophys. Res. 109, A02309.CrossRefGoogle Scholar
[42]Havnes, O., Brattli, A., Aslaksen, T., Singer, W., Latteck, R., Blix, T., Thrane, E. and Trøim, J. 2001 First common-volume observations of layered plasma structures and polar mesospheric echoes by rocket and radar. Geophys. Res. Lett. 28, 1419.CrossRefGoogle Scholar
[43]Havnes, O. and Kassa, M. 2009 On the sizes and observable effects of dust particles in polar mesospheric winter echoes. J. Geophys. Res. 114, D09209.CrossRefGoogle Scholar
[44]Havnes, O., LaHoz, C., Biebricher, A., Kassa, M., Meseret, T., Næsheim, L. I. and Zivkovic, T. 2004 Investigation of the mesospheric PMSE conditions by use of the new overshoot effect. Phys. Scr. T107, 70.CrossRefGoogle Scholar
[45]Havnes, O., LaHoz, C., Næsheim, L. I. and Rietveld, M. T. 2003 First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett. 30, 2229.CrossRefGoogle Scholar
[46]Havnes, O., LaHoz, C., Rietveld, M. T., Kassa, M., Baroni, G. and Biebricher, A. 2009 Observation and Analysis of Polar Mesospheric Winter Echoes Modulated by Artificial Electron Heating. Auckland, New Zealand: ESA Publications.Google Scholar
[47]Havnes, O., Melandsø, F., LaHoz, C., Aslaksen, T. K. and Hartquist, T. W. 1992 Charged dust in the earth's mesopause, effects on radar backscatter. Phys. Scr. 45, 535.CrossRefGoogle Scholar
[48]Havnes, O., Morfill, G. E. and Goertz, C. L. 1996 Plasma potential and grain charge in a dust cloud embedded in a plasma. J. Geophys. Res. 101, 10839.CrossRefGoogle Scholar
[49]Havnes, O., Trøim, J., Blix, T., Mortensen, W., Næsheim, L. I., Thrane, E. and Tønnesen, T. 1996 First detection of charged dust particles in the earth's mesosphere. J. Geophys. Res. 89, 10999.CrossRefGoogle Scholar
[50]Hervig, M., Thompson, R., McHugh, M., Gordley, L., Russell, J. III and Summers, M. 2001 First confirmation that water ice is the primary component of polar mesospheric clouds. Geophys. Res. Lett. 28, 971974.CrossRefGoogle Scholar
[51]Hesstvedt, E. 1961 Note on the nature of noctilucent clouds. J. Geophys. Res. 66, 19851987.CrossRefGoogle Scholar
[52]Hill, R. J. 1978 Non-neutral and quasi-neutral diffusion of weakly ionized multiconstituent plasma. J. Geophys. Res. 83, 989998.CrossRefGoogle Scholar
[53]Hill, R. J. and Bowhill, S. A. 1977 Collision frequencies for use in the continuum momentum equations applied to the lower ionosphere. J. Atmos. Terr. Phys. 39, 803.CrossRefGoogle Scholar
[54]Hocking, W. K. and Röttger, J. 1983 Studies of polar mesosphere summer echoes over EISCAT using calibrated signal strengths and statistical parameters. Radio Sci. 18, 1312.CrossRefGoogle Scholar
[55]Hocking, W. K. and Röttger, J. 1997 Pulse-length dependence of radar signal strengths for Fresnel backscatter. Radio Sci. 32, 1425.CrossRefGoogle Scholar
[56]Holton, J. R. 1982 The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci. 39, 791799.2.0.CO;2>CrossRefGoogle Scholar
[57]Hoppe, U.-P., Hall, C. and Röttger, J. 1988 First observations of summer polar mesospheric backscatter with a 224 MHz radar. Geophys. Res. Lett. 15, 2831.CrossRefGoogle Scholar
[58]Huaman, M. M., Kelley, M. C., Hocking, W. K. and Woodman, R. F. 2001 Polar mesosphere summer echo studies at 51.5 MHz at Resolute Bay, Canada: comparison with Poker Flat results. Radio Sci. 36, 18231837.CrossRefGoogle Scholar
[59]Inhester, B., Ulwick, J., Cho, J. Y. N., Kelley, M. and Schmidt, G. 1990 Consistency of rocket and radar electron density observations: implications about the anisotropy of turbulence. J. Atmos. Terr. Phys. 52, 855873.CrossRefGoogle Scholar
[60]Jensen, E. and Thomas, G. E. 1988 A growth-sedimentation model of polar mesospheric clouds: comparisons with SME measurements. J. Geophys. Res. 93, 24612473.CrossRefGoogle Scholar
[61]Jensen, E. and Thomas, G. E. 1991 Charging of mesospheric particles: implications of electron density and particle coagulation. J. Geophys. Res. 96, 18603.CrossRefGoogle Scholar
[62]Jensen, E., Thomas, G. E. and Toon, O. B. 1989 On the diurnal variation of noctilucent clouds. J. Geophys. Res. 94, 1469314702.CrossRefGoogle Scholar
[63]Jesse, O. 1885 Auffallende Erscheinungen am Abendhimmel. Met. Zeit. 2, 311312.Google Scholar
[64]Karashtin, A. N., Shlyugaev, Y. V., Abramov, V. I., Belov, I. F., Berezin, I. V., Bychkov, V. V., Eryshev, E. B. and Komrakov, G. P. 1997 First HF radar measurements of summer mesopause echoes at SURA. Ann. Geophys. 15, 935941.CrossRefGoogle Scholar
[65]Kassa, M., Havnes, O. and Belova, E. 2005 The effect of electron bite-outs on artificial electron heating and PMSE overshoot. Ann. Geophys. 23, 3633.CrossRefGoogle Scholar
[66]Kavanagh, A., Honary, F., Rietveld, M. T. and Senior, A. 2006 First observations of the artificial modulation of polar mesospheric winter echoes. Geophys. Res. Lett. 33, L19801.CrossRefGoogle Scholar
[67]Kelley, M. C., Huaman, M., Chen, C. Y., Ramos, C., Djuth, F. and Kennedy, E. 2002 Polar mesosphere summer echo observations at HF frequencies using the HAARP Gakona Ionospheric Observatory. Geophys. Res. Lett 29, 1603.CrossRefGoogle Scholar
[68]Kero, A., Bösinger, T., Pollari, P., Turunen, E. and Rietveld, M. 2000 First EISCAT measurements of electron-gas temperature in the artificially heated D-region ionosphere. Ann. Geophys. 18, 12101215.CrossRefGoogle Scholar
[69]Kero, A., Enell, C. F., Kavanagh, A. J., Vierinen, J., Virtanen, I. and Turunen, E. 2008 Could negative ion production explain the polar mesosphere winter echo (PMWE) modulation in active HF heating experiments? Geophys. Res. Lett. 35, 23.CrossRefGoogle Scholar
[70]Kirkwood, S., Barabash, V., Belova, E., Nilsson, H., Rao, T. N., Stebel, K., Osepian, A. and Chilson, P. B. 2002 Polar mesosphere winter echoes during solar proton events. Adv. Polar Upper Atmos. Res. 16, 111.Google Scholar
[71]Kirkwood, S., Chilson, P., Belova, E., Dalin, P., Häggström, I., Rietveld, M. T. and Singer, W. 2006 Infrasound – the cause of strong polar mesosphere winter echoes? Ann. Geophys. 24, 475.CrossRefGoogle Scholar
[72]Klostermeyer, J. 1998 A simple model of the ice particle size distribution in noctilucent clouds. J. Geophys. Res. 103, 2874328752.CrossRefGoogle Scholar
[73]Kopp, E., Eberhardt, P., Herrmann, U. and Björn, L. G. 1985 Positive ion composition of the high latitude summer D-region with noctilucent clouds. J. Geophys. Res. 90, 1304113051.CrossRefGoogle Scholar
[74]LaHoz, C.Havnes, 2008 Artificial modification of polar mesospheric winter echoes with an RF heater: do charged dust particles play an active role? J. Geophys. Res. 113, D19205.CrossRefGoogle Scholar
[75]LaHoz, C., Havnes, O., Næsheim, L. I. and Hysell, D. L. 2006 Observations and theories of polar mesospheric summer echoes at a Bragg wavelength of 16 cm. J. Geophys. Res. 111, D04203.Google Scholar
[76]LaHoz, C., Næsheim, L. I., Havnes, O. and Rietveld, M. T. 2003 First observation of the artificial electron heating induced reduction of the PMSE strength at 933 MHz. In: Proc. EISCAT Workshop, Menlo Park, California, USA.Google Scholar
[77]Leslie, R. J. 1885 Sky glows. Nature 33, 245.CrossRefGoogle Scholar
[78]Lie-Svendsen, Ø., Blix, T. A., Hoppe, U.-P., Thrane, E. V. 2003 Modeling the plasma response to small-scale aerosol particle perturbations in the mesopause region. J. Geophys. Res. 108, 8442.CrossRefGoogle Scholar
[79]Lindzen, R. S. and Holton, J. R. 1981 A theory of the quasi-bieninial oscillation. J. Atmos. Sci. 25, 1095.2.0.CO;2>CrossRefGoogle Scholar
[80]Lübken, F.-J. 1999 Thermal structure of the Arctic summer mesosphere. J. Geophys. Res. 104, 9135.Google Scholar
[81]Lübken, F.-J., Lehmacher, G., Blix, T. A., Hoppe, U.-P., Thrane, E., Cho, J. and Swartz, W. 1993 First in-situ observations of neutral and plasma density fluctuations within a PMSE layer. Geophys. Res. Lett. 20, 23112314.CrossRefGoogle Scholar
[82]Lübken, F.-J., Strelnikov, B., Rapp, M., Singer, W., Latteck, R., Brattli, A., Hoppe, U.-P. and Friedrich, M. 2006 The thermal and dynamical state of the atmosphere during polar mesospheric winter echoes. Atmos. Chem. Phys. 6, 13.CrossRefGoogle Scholar
[83]Morris, R. J., Murphy, D. J., Reid, I. M., Holdsworth, D. A. and Vincent, R. A. 1991 First polar mesosphere summer echoes observed at Davis, Antarctica (68.6°S). J. Geophys. Res. 96, 5837.Google Scholar
[84]Næsheim, L. I., Havnes, O. and LaHoz, C. 2008 A comparison of polar mesosphere summer echo at VHF (224 MHz) and UHF (930 MHz) and the effects of artificial electron heating. J. Geophys. Res. 113, D08205.CrossRefGoogle Scholar
[85]Natanson, G. L. 1960 On the theory of the charging of amicroscopic aerosol particles as a result of capture of gas ions. Sov. Phys. Tech. Phys. 5, 538551.Google Scholar
[86]Nussbaumer, V., Fricke, K.-H., Langer, M., Singer, W. and Von Zahn, U. 1996 First simulations and common-volume observations of NLC and PMSE by lidar and radar. J. Geophys. Res. 101, 1916119167.CrossRefGoogle Scholar
[87]Nygren, T. 1996 Introduction to Incoherent Scatter Measurements. Sodankylä, Finland: Invers Oy.Google Scholar
[88]Ogawa, T., Arnold, N. F., Kirkwood, S., Nishitani, N. and Lester, M. 2003 Finnland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann. Geophys. 21, 10471055.CrossRefGoogle Scholar
[89]Parthasarathy, P. 1976 Mesopause dust as a sink for ionization. J. Geophys. Res. 81, 2392.CrossRefGoogle Scholar
[90]Plane, J. M. C. 2000 The role of sodium bicarbonate in the nucleation of noctilucent clouds. Ann. Geophys. 18, 807814.CrossRefGoogle Scholar
[91]Plane, J. M. C. 2003 Atmospheric chemistry of meteoric metals. Chem. Rev. 103, 49634984.CrossRefGoogle ScholarPubMed
[92]Rapp, M. 2000 Aerosol layers in the polar summer mesosphere: interaction with the plasma of the D-region and dependence on temperature and dynamics. Doctoral thesis, Bonn University, Germany.Google Scholar
[93]Rapp, M. 2009 Charging of mesospheric aerosol particles: the role of photo detachment and photo ionization from meteoric smoke and ice particles. Ann. Geophys. 27, 24172422.CrossRefGoogle Scholar
[94]Rapp, M. and Lübken, F.-J. 2000 Electron temperature control of PMSE. Geophys. Res. Lett. 27, 3285.CrossRefGoogle Scholar
[95]Rapp, M. and Lübken, F.-J. 2001 Modelling of particle charging in the polar mesosphere: part 1 – general results. J. Atmos. Sol. Terr. Phys. 63, 759.CrossRefGoogle Scholar
[96]Rapp, M. and Lübken, F.-J. 2003 On the nature of PMSE: electron diffusion in the vicinity of charged particles revisited. J. Geophys. Res. 108, 8437.CrossRefGoogle Scholar
[97]Rapp, M. and Lübken, F.-J. 2004 Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos. Chem. Phys. 4, 2601.CrossRefGoogle Scholar
[98]Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G. E. and Jensen, E. 2002 Small-scale temperature variations in the vicinity of NLC: experimental and model results. J. Geophys. Res. 107, 4392.CrossRefGoogle Scholar
[99]Rapp, M., Strelnikova, I., Latteck, R., Baumgarten, G., Megner, L., Gumbel, J., Friedrich, M., Hoppe, U.-P. and Robertson, S. 2009 First in situ measurement of the vertical distribution of ice volume/mass density in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign. Ann. Geophys. 27, 755766.CrossRefGoogle Scholar
[100]Rapp, M. and Thomas, G. E. 2006 Modeling of the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. J. Atmos. Sol. Terr. Phys. 68, 715744.CrossRefGoogle Scholar
[101]Reid, G. C. 1975 Ice clouds at the summer polar mesopause. J. Atmos. Sci. 32, 523535.2.0.CO;2>CrossRefGoogle Scholar
[102]Reid, G. C. 1990 Ice particles and electron ‘bite-outs’ at the summer polar mesopause. J. Geophys. Res. 95, 1389113896.CrossRefGoogle Scholar
[103]Reid, I. M., Czechowsky, P., Rüster, R. and Schmidt, G. 1989 First VHF radar measurements of mesopause summer echoes at mid-latitudes. Geophys. Res. Lett. 16, 135.CrossRefGoogle Scholar
[104]Reid, I. M., Rüster, R. and Schmidt, G. 1987 VHF radar observations of cat's-eye-like structures at mesospheric heights. Nature 327, 43.CrossRefGoogle Scholar
[105]Rietveld, M. T., Kohl, H. K. and Kopka, H. 1993 Introduction to ionospheric heating at Tromsø. Part I: experimental overview. J. Atmos. Terr. Phys. 55, 577.CrossRefGoogle Scholar
[106]Robertson, S., Horányi, M., Knappmiller, S., Sternovsky, Z., Holzworth, R., Shimogawa, M., Friedrich, M., Torkar, K., Gumbel, J., Megner, L., et al. 2009 Mass analysis of charged aerosol particles in NLC and PMSE during the ECOMA/MASS campaign. Ann. Geophys. 27, 1213.CrossRefGoogle Scholar
[107]Röttger, J. 2001 Observations of the polar D-region and the mesosphere with the EISCAT Svalbard radar and the SOUSY Svalbard radar. Mem. Nat. Inst. Pol. Res. 54, 920.Google Scholar
[108]Röttger, J., LaHoz, C., Kelley, M. C., Hoppe, U.-P. and Hall, C. 1988 The structure and dynamics of polar mesosphere summer echoes observed with the EISCAT 224 MHz radar. Geophys. Res. Lett. 15, 13531356.CrossRefGoogle Scholar
[109]Röttger, J., Rietveld, M. T., LaHoz, C., Hall, C., Kelley, M. C. and Swartz, W. 1990 Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9 MHz radar, their similarity to 224 MHz radar echoes and their relation to turbulence and electron density profiles. Radio Sci. 25, 671687.CrossRefGoogle Scholar
[110]Routledge, G., Kosch, M. J., Senior, A., Kavanagh, A. J. and Rietveld, M. T. 2011 A statistical survey of electron temperature enhancements in heater modulated polar mesospheric summer echoes at EISCAT. J. Atmos. Sol. Terr. Phys. 73, 472.CrossRefGoogle Scholar
[111]Røyrvik, O. and Smith, L. G. 1984 Comparison of mesospheric VHF radar echoes and rocket probe electron concentration measurements. J. Geophys. Res. 89, 9014.CrossRefGoogle Scholar
[112]Sato, T. 1989 Radar principles. In: Handbook for MAP, Vol. 30 (ed. Fukao, S.). Urbana, IL: SCOSTEP, 19 pp.Google Scholar
[113]Scales, W. A. 2004 Electron temperature effects on small-scale plasma irregularities associated with charged dust in the earth's mesosphere. IEEE Trans. Plasma Sci. 32, 724.CrossRefGoogle Scholar
[114]Scales, W. A. and Chen, C. 2008 On initial enhancement of mesospheric dust associated plasma irregularities subsequent to radio wave heating. Ann. Geophys. 26, 22652271.CrossRefGoogle Scholar
[115]Scales, W. A. and Chen, C. 2008 On the initial perturbation of mesospheric dust associated irregularities by high powered radio waves. Adv. Space Res. 41 (1), 5056.CrossRefGoogle Scholar
[116]Shimizu, S., Klumov, B., Shimizu, T., Rothermel, H., Havnes, O., Thomas, H. M. and Morfill, G. E. 2010 Synthesis of water ice particles in a plasma chamber. J. Geophys. Res. 115, D18205.CrossRefGoogle Scholar
[117]Smiley, B., Robertson, S., Horanyi, M., Blix, T., Rapp, M., Latteck, R. and Gumbel, J. 2003 Measurement of positively and negatively charged particles inside PMSE during MIDAS SOLSTICE 2001. J. Geophys. Res. 108, D8.CrossRefGoogle Scholar
[118]Stebel, K., Blum, U., Fricke, K.-H., Kirkwood, S., Mitchell, N. J. and Osepian, A. 2004 Joint radar/lidar observations of possible aerosol layers in the winter mesosphere. J. Atmos. Sol. Terr. Phys. 66, 957.CrossRefGoogle Scholar
[119]Strelnikov, B., Rapp, M., Blix, T. A., Engler, N., Hoffner, J., Lautenbach, J., Lübken, F.-J., Smiley, B. and Friedrich, M. 2006 In situ observations of small-scale neutral and plasma dynamics in the mesosphere/lower thermosphere at 79°N. Adv. Space Res. 38, 23882393.CrossRefGoogle Scholar
[120]Thomas, L., Astin, I. and Prichard, I. T. 1992 The characteristics of VHF echoes from the summer mesopause region and mid-latitudes. J. Atmos. Terr. Phys. 54, 969.CrossRefGoogle Scholar
[121]Turco, R. P., Toon, O. B., Whitten, R. C., Keesee, R. G. and Hollenbach, D. 1982 Noctilucent clouds: simulation studies of their genesis, properties and global influences. Planet. Space Sci. 3, 11471181.CrossRefGoogle Scholar
[122]Ulwick, J. C., Baker, K. D., Kelley, M. C., Balsley, B. B. and Ecklund, W. L. 1988 Comparison of simultaneous MST radar and electron density probe measurements during STATE. J. Geophys. Res. 93, 6989.CrossRefGoogle Scholar
[123]Vincent, R. A. and Reid, I. M. 1983 HF Doppler measurements of mesospheric momentum fluxes. J. Atmos. Sci. 40, 13211333.2.0.CO;2>CrossRefGoogle Scholar
[124]Von Cossart, G., Fiedler, J. and Von Zahn, U. 1999 Size distributions of NLC particles as determined from 3-color observations of NLC by ground-based lidar. Geophys. Res. Lett. 26, 1513.CrossRefGoogle Scholar
[125]Von Zahn, U. and Bremer, J. 1999 Simultaneous and common-volume observations of noctilucent clouds and polar mesosphere summer echoes. Geophys. Res. Lett. 26, 1521.CrossRefGoogle Scholar
[126]Von Zahn, U. and Meyer, W. 1989 Mesopause temperatures in polar summer. J. Geophys. Res. 94, 14647.CrossRefGoogle Scholar
[127]Weingartner, J. C. and Draine, B. T. 2001 Photoelectric emission from interstellar dust: grain charging and gas heating. Astrophys. J. Suppl. Series 134, 263.CrossRefGoogle Scholar
[128]Witt, G. 1969 The nature of noctilucent clouds. Space Res. IX, 157169.Google Scholar
[129]Woodman, R. F. and Guillen, A. 1974 Radar observations of winds and turbulence in the stratosphere and mesosphere. J. Atmos. Sci. 31, 493505.2.0.CO;2>CrossRefGoogle Scholar
[130]Zeller, O., Zecha, M., Bremer, J., Latteck, R. and Singer, W. 2006 Mean characteristics of mesosphere winter echoes at mid- and high-latitudes. J. Atmos. Sol. Terr. Phys. 68, 1087.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *