Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-8fhp6 Total loading time: 0.189 Render date: 2021-09-18T01:39:22.880Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On the value of the reconnection rate

Published online by Cambridge University Press:  04 November 2016

L. Comisso*
Affiliation:
Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544, USA
A. Bhattacharjee
Affiliation:
Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08544, USA
*Corresponding
Email address for correspondence: lcomisso@princeton.edu

Abstract

Numerical simulations have consistently shown that the reconnection rate in certain collisionless regimes can be fast, of the order of $0.1v_{A}B_{u}$ , where $v_{A}$ and $B_{u}$ are the Alfvén speed and the reconnecting magnetic field upstream of the ion diffusion region. This particular value has been reported in myriad numerical simulations under disparate conditions. However, despite decades of research, the reasons underpinning this specific value remain mysterious. Here, we present an overview of this problem and discuss the conditions under which the ‘0.1 value’ is attained. Furthermore, we explain why this problem should be interpreted in terms of the ion diffusion region length.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrés, N., Dmitruk, P. & Gómez, D. 2016 Influence of the Hall effect and electron inertia in collisionless magnetic reconnection. Phys. Plasmas 23, 022903.CrossRefGoogle Scholar
Aydemir, A. Y. 1992 Nonlinear studies of $m=1$ modes in high-temperature plasmas. Phys. Fluids B 4, 3469.CrossRefGoogle Scholar
Bessho, N. & Bhattacharjee, A. 2005 Collisionless reconnection in an electron–positron plasma. Phys. Rev. Lett. 95, 245001.CrossRefGoogle Scholar
Bhattacharjee, A., Germaschewski, K. & Ng, C.-S. 2005 Current singularities: drivers of impulsive reconnection. Phys. Plasmas 12, 042305.CrossRefGoogle Scholar
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. 2009 Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102.CrossRefGoogle Scholar
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A. et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 37153719.CrossRefGoogle Scholar
Biskamp, D. 1986 Magnetic reconnection via current sheets. Phys. Fluids 29, 1520.CrossRefGoogle Scholar
Biskamp, D., Schwarz, E. & Drake, J. F. 1995 Ion-controlled collisionless magnetic reconnection. Phys. Rev. Lett. 75, 3850.CrossRefGoogle ScholarPubMed
Borgogno, D., Grasso, D., Porcelli, F., Califano, F., Pegoraro, F. & Farina, D. 2005 Aspects of three-dimensional magnetic reconnection. Phys. Plasmas 12, 032309.CrossRefGoogle Scholar
Cassak, P. A., Shay, M. A. & Drake, J. F. 2009 Scaling of Sweet–Parker reconnection with secondary islands. Phys. Plasmas 16, 120702.CrossRefGoogle Scholar
Chacón, L., Simakov, A. N., Lukin, V. S. & Zocco, A. 2008 Fast reconnection in nonrelativistic 2D electron-positron plasmas. Phys. Rev. Lett. 101, 025003.CrossRefGoogle ScholarPubMed
Christie, A. 1936 The A.B.C. Murders. Collins Crime Club.Google Scholar
Comisso, L. & Asenjo, F. A. 2014 Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas. Phys. Rev. Lett. 113, 045001.CrossRefGoogle ScholarPubMed
Comisso, L. & Grasso, D. 2016 Visco-resistive plasmoid instability. Phys. Plasmas 23, 032111.CrossRefGoogle Scholar
Comisso, L., Grasso, D. & Waelbroeck, F. L. 2015 Extended theory of the Taylor problem in the plasmoid-unstable regime. Phys. Plasmas 22, 042109.CrossRefGoogle Scholar
Comisso, L., Grasso, D., Waelbroeck, F. L. & Borgogno, D. 2013 Gyro-induced acceleration of magnetic reconnection. Phys. Plasmas 20, 092118.CrossRefGoogle Scholar
Comisso, L., Lingam, M., Huang, Y.-M. & Bhattacharjee, A. 2016 General theory of the plasmoid instability. Phys. Plasmas 23, 100702.CrossRefGoogle Scholar
Daughton, W. & Karimabadi, H. 2007 Collisionless magnetic reconnection in large-scale electron-positron plasmas. Phys. Plasmas 14, 072303.CrossRefGoogle Scholar
Daughton, W., Nakamura, T. K. M., Karimabadi, H., Roytershteyn, V. & Loring, B. 2014 Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys. Plasmas 21, 052307.CrossRefGoogle Scholar
Daughton, W., Roytershteyn, V., Albright, B. J., Karimabadi, H., Yin, L. & Bowers, K. J. 2009 Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103, 065004.CrossRefGoogle ScholarPubMed
Daughton, W., Scudder, J. & Karimabadi, H. 2006 Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101.CrossRefGoogle Scholar
Dorelli, J. C. & Bhattacharjee, A. 2008 Defining and identifying three-dimensional magnetic reconnection in resistive magnetohydrodynamic simulations of Earth’s magnetosphere. Phys. Plasmas 15, 056504.Google Scholar
Fitzpatrick, R. 2004 Scaling of forced magnetic reconnection in the Hall-magnetohydrodynamic Taylor problem. Plasmas 11, 937.CrossRefGoogle Scholar
Grasso, D., Pegoraro, F., Porcelli, F. & Califano, F. 1999 Hamiltonian magnetic reconnection. Plasma Phys. Control. Fusion 41, 1497.CrossRefGoogle Scholar
Greene, J. M. 1998 Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 85838590.CrossRefGoogle Scholar
Guo, F., Liu, Y.-H., Daughton, W. & Li, H. 2015 Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167.CrossRefGoogle Scholar
Hesse, M., Forbes, T. & Birn, J. 2005 On the relation between reconnected magnetic flux and parallel electric fields in the solar corona. Astrophys. J. 631, 1227.CrossRefGoogle Scholar
Huang, Y.-M. & Bhattacharjee, A. 2010 Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17, 062104.CrossRefGoogle Scholar
Huang, Y.-M., Bhattacharjee, A. & Boozer, A. H. 2014 Rapid change of field line connectivity and reconnection in stochastic magnetic fields. Astrophys. J. 793, 106.CrossRefGoogle Scholar
Ji, H. & Daughton, W. 2011 Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18, 111207.CrossRefGoogle Scholar
Kleva, R. G., Drake, J. F. & Waelbroeck, F. L. 1995 Fast reconnection in high temperature plasmas. Phys. Plasmas 2, 23.CrossRefGoogle Scholar
Kulsrud, R. M. 2001 Magnetic reconnection: Sweet–Parker versus Petschek. Earth Planets Space 53, 417422.CrossRefGoogle Scholar
Kulsrud, R. M. 2005 Plasma Physics for Astrophysics. Princeton University Press.Google Scholar
Kulsrud, R. M. 2011 Intuitive approach to magnetic reconnection. Phys. Plasmas 18, 111201.CrossRefGoogle Scholar
Lau, Y.-T. & Finn, J. M. 1990 Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672.CrossRefGoogle Scholar
Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H. & Gary, S. P. 2014 Do dispersive waves play a role in collisionless magnetic reconnection? Phys. Plasmas 21, 022113.Google Scholar
Liu, Y.-H., Guo, F., Daughton, W., Li, H. & Hesse, M. 2015 Scaling of magnetic reconnection in relativistic collisionless pair plasmas. Phys. Rev. Lett. 114, 095002.CrossRefGoogle ScholarPubMed
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703.CrossRefGoogle Scholar
Ma, Z. W. & Bhattacharjee, A. 1996 Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas. Geophys. Res. Lett. 23, 16731676.CrossRefGoogle Scholar
Mandt, M. E., Denton, R. E. & Drake, J. F. 1994 Transition to whistler mediated magnetic reconnection. Geophys. Res. Lett. 21, 7376.CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986 Turbulent magnetic reconnection. Phys. Fluids 29, 2513.CrossRefGoogle Scholar
Ottaviani, M. & Porcelli, F. 1993 Nonlinear collisionless magnetic reconnection. Phys. Rev. Lett. 21, 082114.Google Scholar
Park, W., Monticello, D. A. & White, R. B. 1984 Reconnection rates of magnetic fields including the effects of viscosity. Phys. Fluids 27, 137.CrossRefGoogle Scholar
Parker, E. N. 1957 Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509520.CrossRefGoogle Scholar
Petschek, H. E. 1964 Magnetic Field Annihilation (ed. Hess, W. N.), AAS/NASA Symposium on the Physics of Solar Flares, p. 425. NASA.Google Scholar
Porcelli, F., Borgogno, D., Califano, F., Grasso, D., Ottaviani, M. & Pegoraro, F. 2002 Recent advances in collisionless magnetic reconnection. Plasma Phys. Control. Fusion 44, 389.CrossRefGoogle Scholar
Priest, E. 1985 Current sheets in solar flares. In Unstable Current Systems and Plasma Instabilities in Astrophysics, IAU 107 (ed. Kundu, M. R. & Holman, G. D.), p. 233. Reidel.CrossRefGoogle Scholar
Priest, E. & Forbes, T. 1986 New models for fast steady state magnetic reconnection. J. Geophys. Res. 9, 55795588.CrossRefGoogle Scholar
Priest, E. & Forbes, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.CrossRefGoogle Scholar
Rogers, B. N., Denton, R. E., Drake, J. F. & Shay, M. A. 2001 Role of dispersive waves in collisionless magnetic reconnection. Phys. Rev. Lett. 87, 195004.CrossRefGoogle Scholar
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. & Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 115003.CrossRefGoogle Scholar
Shay, M. A. & Drake, J. F. 1998 The role of electron dissipation on the rate of collisionless magnetic reconnection. Geophys. Res. Lett. 25, 37593762.CrossRefGoogle Scholar
Shay, M., Drake, J., Rogers, B. & Denton, R. 1999 The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. 26, 21632166.CrossRefGoogle Scholar
Shay, M., Drake, J., Swisdak, M. & Rogers, B. 2004 The scaling of embedded collisionless reconnection. Phys. Plasmas 11, 2199.CrossRefGoogle Scholar
Shibata, K. & Tanuma, S. 2001 Plasmoid-induced-reconnection and fractal reconnection. Earth, Planets Space 53, 473482.CrossRefGoogle Scholar
Stanier, A., Simakov, A. N., Chacón, L. & Daughton, W. 2015 Fluid versus kinetic magnetic reconnection with strong guide fields. Phys. Plasmas 22, 101203.Google Scholar
Sweet, P. A. 1958 The neutral point theory of solar flares. In Electromagnetic Phenomena in Cosmical Physics (ed. Lehnert, B.), p. 123. Cambridge University Press.Google Scholar
Tajima, T. & Shibata, K. 1997 Plasma Astrophysics, Frontiers in Physics. Addison-Wesley.Google Scholar
Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. A. 2010 Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle Scholar
Wang, X. & Bhattacharjee, A. 1993 Nonlinear dynamics of the $m=1$ instability and fast sawtooth collapse in high-temperature plasmas. Phys. Rev. Lett. 70, 1627.CrossRefGoogle ScholarPubMed
Wendel, D. E., Olson, D. K., Hesse, M., Aunai, N., Kuznetsova, M., Karimabadi, H., Daughton, W. & Adrian, M. L. 2013 The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection. Phys. Plasmas 20, 122105.CrossRefGoogle Scholar
Wilmot-Smith, A. L. & Hornig, G. 2011 A time-dependent model for magnetic reconnection in the presence of a separator. Astrophys. J. 740, 89.CrossRefGoogle Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82, 603.CrossRefGoogle Scholar
Zenitani, S. & Hesse, M. 2008 Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection. Astrophys. J. 684, 1477.CrossRefGoogle Scholar
28
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the value of the reconnection rate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the value of the reconnection rate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the value of the reconnection rate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *