Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-l2zqg Total loading time: 0.146 Render date: 2021-09-18T13:10:36.728Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Three-wave interaction and Manley–Rowe relations in quantum hydrodynamics

Published online by Cambridge University Press:  25 March 2014

Erik Wallin*
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden
Jens Zamanian
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden
Gert Brodin
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden
*Corresponding
Email address for correspondence: erik.wallin@physics.umu.se

Abstract

The theory for nonlinear three-wave interaction in magnetized plasmas is reconsidered using quantum hydrodynamics. The general coupling coefficients are calculated for the generalized Bohm de Broglie term. It is found that the Manley–Rowe relations are fulfilled only if the form of the particle dispersive term coincides with the standard expression. The implications of our results are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliev, Yu. M. and Brodin, G. 1990 Instability of a strongly inhomogeneous plasma. Phys. Rev. A 42, 23742378.CrossRefGoogle ScholarPubMed
Atwater, H. A. 2007 The promise of plasmonics. Sci. Am. 296, 5662.CrossRefGoogle ScholarPubMed
Brodin, G. and Stenflo, L. 1988a Parametric instabilities of finite amplitude Alfvén waves. Phys. Scr. 37 (1), 89.CrossRefGoogle Scholar
Brodin, G. and Stenflo, L. 1988b Three-wave coupling coefficients for MHD plasmas. J. Plasma Phys. 39 (2), 277284.CrossRefGoogle Scholar
Brodin, G. and Stenflo, L. 1989 Three-wave coupling coefficients for magnetized plasmas with pressure anisotropy. J. Plasma Phys. 41, 199208.CrossRefGoogle Scholar
Dodin, I. Y. 2013 Geometric view on non-Eikonal waves. arXiv preprint arXiv:1310.5050.Google Scholar
Dodin, I. Y., Zhmoginov, A. I. and Fisch, N. J. 2008 Manley–Rowe relations for an arbitrary discrete system. Phys. Lett. A 372 (39), 60946096.CrossRefGoogle Scholar
Dysthe, K. B., Leer, E., Trulsen, J. and Stenflo, L. 1977 Stimulated Brillouin scattering in the ionosphere. J. Geophys. Res. 82 (4), 717718.CrossRefGoogle Scholar
Gardner, C. L. 1994 The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (2), 409427.CrossRefGoogle Scholar
Glenzer, S. H. and Redmer, R. 2009 X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 16251663.CrossRefGoogle Scholar
Haas, F. 2011 Quantum Plasmas. New York, NY: Springer.CrossRefGoogle ScholarPubMed
Haas, F., Marklund, M., Brodin, G. and Zamanian, J. 2010a Fluid moment hierarchy equations derived from quantum kinetic theory. Phys. Lett. A 374 (3), 481484.CrossRefGoogle Scholar
Haas, F., Zamanian, J., Marklund, M. and Brodin, G. 2010b Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory. New J. Phys. 12 (7), 073027.CrossRefGoogle Scholar
Harding, A. K. and Lai, D. 2006 Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69 (9), 2631.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. London: Academic Press.Google Scholar
Kaufman, A. N. and Stenflo, L. 1975 Action conservation in the presence of a high-frequency field. Plasma Phys. 17 (5), 403.CrossRefGoogle Scholar
Kaufman, A. N. and Stenflo, L. 1979 Wave coupling in cold non-uniform magnetoplasma. Phys. Scr. 19, 523.CrossRefGoogle Scholar
Kouveliotou, C., Dieters, S., Strohmayer, T., Van Paradijs, J., Fishman, G. J., Meegan, C. A., Hurley, K., Kommers, J., Smith, I., Frail, D., et al. 1998 An X-ray pulsar with a super strong magnetic field in the soft γ-ray repeater SGR1806- 20. Nature 393 (6682), 235237.CrossRefGoogle Scholar
Kruer, W. L. 1988 The Physics of Laser Plasma Interactions. Boston, MA: Addison-Wesley.Google Scholar
Larsson, J. 1996 A new Hamiltonian formulation for fluids and plasmas. Part 3. Multifluid electrodynamics. J. Plasma Phys. 55, 279300.CrossRefGoogle Scholar
Larsson, J. and Stenflo, L. 1973 Three-wave interactions in magnetized plasmas. Beiträge aus der Plasmaphysik 13 (3), 169181.CrossRefGoogle Scholar
Lashmore-Davies, C. N. 1981 Nonlinear laser plasma interaction theory. In Plasma Physics and Nuclear Fusion Research (ed. Gill, R. D.). London: Academic Press, pp. 319354, Chap. 14.CrossRefGoogle Scholar
Lindgren, T., Larsson, J. and Stenflo, L. 1981 Three-wave coupling coefficients for non-uniform plasmas. J. Plasma Phys. 26, 407418.CrossRefGoogle Scholar
Lundin, J., Zamanian, J., Marklund, M. and Brodin, G. 2007 Short wavelength electromagnetic propagation in magnetized quantum plasmas. Phys. Plasmas 14, 062112.CrossRefGoogle Scholar
Manfredi, G. 2005 How to model quantum plasmas. In Topics in Kinetic Theory (eds. Passot, T., Sulem, C. and Sulem, P.-L.). Toronto, Canada: Fields Institute Communications, pp. 263287.Google Scholar
Manfredi, G. and Haas, F. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64 (7), 075316.CrossRefGoogle Scholar
Manfredi, G. and Hervieux, P. A. 2007 Autoresonant control of the many-electron dynamics in non-parabolic quantum wells. Appl. Phys. Lett. 91 (6), 061108-061108-3.CrossRefGoogle Scholar
Manley, J. M. and Rowe, H. E. 1956 Some general properties of nonlinear elements-part i. general energy relations. Proc. IRE 44 (7), 904913.CrossRefGoogle Scholar
Mironov, V. A., Sergeev, A. M., Vanin, E. V and Brodin, G. 1990 Localized nonlinear wave structures in the nonlinear photon accelerator. Phys. Rev. A 42, 48624866.CrossRefGoogle ScholarPubMed
Palmer, D. M., Barthelmy, S., Gehrels, N., Kippen, R. M., Cayton, T., Kouveliotou, C., Eichler, D., Wijers, R. A. M. J., Woods, P. M., Granot, J., et al. 2005 A giant big gamma-ray flare from the magnetar SGR 1806-20. Nature 434, 11071109.CrossRefGoogle Scholar
Sagdeev, R. Z. and Galeev, A. 1969 Nonlinear Plasma Theory. New York, NY: W. A. Benjamin.Google Scholar
Shahid, M., Hussain, A. and Murtaza, G. 2013 A comparison of parametric decay of oblique Langmuir wave in high and low density magneto-plasmas. Phys. Plasmas 20, 092121.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys.-Usp. 53 (1), 51.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885906.CrossRefGoogle Scholar
Sjölund, A. and Stenflo, L. 1967 Nonlinear coupling in a magnetized plasma. Z. Phys. 204 (3), 211214.CrossRefGoogle Scholar
Stenflo, L. 1994 Resonant three-wave interactions in plasmas. Phys. Scr. T50, 15.CrossRefGoogle Scholar
Stenflo, L. 2004 Comments on stimulated electromagnetic emissions in the ionospheric plasma. Phys. Scr. T107, 262.CrossRefGoogle Scholar
Stenflo, L. and Larsson, J. 1977 Three-wave coupling coefficients for magnetized plasmas. In Plasma Physics: Nonlinear Theory and Experiments, Proceedings of Nobel Symposium, Vol. 36 (ed. Wilhelmsson, H.). New York, NY: Plenum Press, pp. 152158.CrossRefGoogle Scholar
Tsytovich, V. N. 1970 Nonlinear Effects in Plasmas. New York, NY: Plenum Press.CrossRefGoogle Scholar
Vladimirov, S. V. and Stenflo, L. 1997 Three-wave processes in a turbulent nonstationary plasma. Phys. Plasmas 4, 1249.CrossRefGoogle Scholar
Weiland, J. and Wilhelmsson, H. 1977 Coherent Non-Linear Interaction of Waves in Plasmas. New York, NY: Pergamon Press.Google Scholar
Wolf, S. A., Awschalom, D. D., Buhrman, R. A, Daughton, J. M., von Moln, S., Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M. 2001 Spintronics: a spin-based electronics vision for the future. Science 294 (5546), 14881495.CrossRefGoogle ScholarPubMed
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three-wave interaction and Manley–Rowe relations in quantum hydrodynamics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three-wave interaction and Manley–Rowe relations in quantum hydrodynamics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three-wave interaction and Manley–Rowe relations in quantum hydrodynamics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *