Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-10-31T22:50:00.311Z Has data issue: false hasContentIssue false

Two-dimensional generalizations of the Newcomb equation

Published online by Cambridge University Press:  13 March 2009

R. L. Dewar
Affiliation:
Department of Theoretical Physics and Plasma Research Laboratory, Research School of Physical Sciences, The Australian National University, G.P.O. Box 4, Canberra, ACT 2601, Australia
A. Pletzer
Affiliation:
Department of Theoretical Physics and Plasma Research Laboratory, Research School of Physical Sciences, The Australian National University, G.P.O. Box 4, Canberra, ACT 2601, Australia

Abstract

The Bineau reduction to scalar form of the equation governing ideal zero-frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in ‘universal co-ordinates’, applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one-dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case we show that the equation can be transformed to that of Newcomb. In the two-dimensional case there is a transformation that leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansion about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. The derivations of the ideal interchange and ballooning criteria from the formalism are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 Proc. R. Soc. Land. A 244, 17.Google Scholar
Bineau, M. 1962 Nucl. Fusion, 2, 130 [English translation 1988 by A. Pletzer & R. L. Dewar, Report ANU/TPP88/01 available on request].CrossRefGoogle Scholar
Connor, J. W., Cowley, S. C., Hastie, R. J., Hender, T. C., Hood, A. & Martin, T. J. 1988 Phys. Fluids, 31, 577.CrossRefGoogle Scholar
Connor, J. W., Hastie, R. J. & Taylor, J. B. 1979 Proc. R. Soc. Lond. A 365, 1.Google Scholar
Dewar, R. L. 1988 Theory of Fusion Plasmas. Proceedings of the Workshop held at Villa Cipressi-Varenna, Italy, 24–28 August 1987 (ed. Bondeson, A., Sindoni, E. & Troyon, F.). Sociéta Italiana di Fisica, Editrice Compositori, p. 107.Google Scholar
Dewar, R. L. & Glasser, A. H. 1983 Phys. Fluids 26, 3038.CrossRefGoogle Scholar
Dewar, R. L. 1983 Annual Controlled Fusion Theory Conference, Sherwood Theory Meeting, Arlington, Virginia, Paper IR 24.Google Scholar
Dewar, R. L. & Grimm, R. C. 1984 Computational Techniques and Applications: CTAC-93. Proceedings of the International Conference held in Sydney, Australia, August 1983 (ed. Noye, J. & Fletcher, C.), p. 730. North-Holland.Google Scholar
Dewar, R. L., Manickam, J., Grimm, R. C. & Chance, M. S. 1981 Nucl. Fusion 21, 493 [Corrigendum 22, 307 (1982)].CrossRefGoogle Scholar
Dewar, R. L., Monticello, D. M. & Sy, W. N.-C. 1984 Phys. Fluids 27, 1723.CrossRefGoogle Scholar
Furth, H. P., Rutherford, P. H. & Selberg, H. 1973 Phys. Fluids 16, 1054.CrossRefGoogle Scholar
Gel'fand, I. M. & Shilov, G. E. 1964 Generalized Functions, Academic, ch. I.Google Scholar
Glasser, A. H., Greene, J. M. & Johnson, J. L. 1975 Phys. Fluids 18, 875.CrossRefGoogle Scholar
Greene, J. M. & Johnson, J. L. 1965 Advances in Theoretical Physics Vol. 1. (ed. Bruekner, K.), Academic.Google Scholar
Greene, J. M. & Johnson, J. L. 1968 Plasma Physics 10, 729.CrossRefGoogle Scholar
Grimm, R. C., Dewar, R. L. & Manickam, J. 1983 a J. Comput. Phys. 49, 94.CrossRefGoogle Scholar
Grimm, R. C., Dewar, R. L., Manickam, J., Jardin, S. C., Glasser, A. H. & Chance, M. S. 1983 b Plasma Physics and Controlled Nuclear Fusion Research 1982, vol. III, p. 35. IAEA.Google Scholar
Ince, E. L. 1956 Ordinary Differential Equations. Dover.Google Scholar
Manickam, J., Grimm, R. C. & Dewar, R. L. 1983 Energy Modelling and Simulation (ed. Stapleman, R. F., Carver, M., Ames, W. F. & Vichnevetsky, R.), p. 355. North-Holland.Google Scholar
Miller, A. D. & Dewar, R. L. 1986 J. Comput. Phys. 66, 356.CrossRefGoogle Scholar
Newcomb, W. A. 1960 Ann. Phys. (NY) 10, 232.CrossRefGoogle Scholar
Pletzer, A. & Dewar, R. L. 1989 Computational Techniques and Applications: CTAC-89. Proceedings of the International Conference held in Brisbane, Australia, 10–12 July 1989 (ed. Hogarth, W. L. & Noye, B. J.). Hemisphere.Google Scholar
Yakubovich, V. A. & Starzhinskii, V. M. 1975 Linear Differential Equations with Periodic Coefficients, Wiley, VI, p. 110.Google Scholar