Skip to main content Accessibility help
×
Home

Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria

  • Thomas Antonsen (a1), Elizabeth J. Paul (a1) and Matt Landreman (a1)

Abstract

The shape gradient quantifies the change in some figure of merit resulting from differential perturbations to a shape. Shape gradients can be applied to gradient-based optimization, sensitivity analysis and tolerance calculation. An efficient method for computing the shape gradient for toroidal three-dimensional magnetohydrodynamic (MHD) equilibria is presented. The method is based on the self-adjoint property of the equations for driven perturbations of MHD equilibria and is similar to the Onsager symmetry of transport coefficients. Two versions of the shape gradient are considered. One describes the change in a figure of merit due to an arbitrary displacement of the outer flux surface; the other describes the change in the figure of merit due to the displacement of a coil. The method is implemented for several example figures of merit and compared with direct calculation of the shape gradient. In these examples the adjoint method reduces the number of equilibrium computations by factors of $O(N)$ , where $N$ is the number of parameters used to describe the outer flux surface or coil shapes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: antonsen@umd.edu

References

Hide All
Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N. & Shohet, J. L. 1995 The helically symmetric experiment, (HSX) goals, design and status. Fusion Technol. 27 (3T), 273.
Bernstein, I., Frieman, E., Kruskal, M. & Kulsrud, R. 1958 An energy principle for hydromagnetic stability problems. Proceedings of the Royal Society A 244 (1236), 17.
Boozer, A. H. 2015 Stellarator design. J. Plasma Phys. 81, 515810606.
Brooks, A. & Reiersen, W. 2003 Coil tolerance impact on plasma surface quality for NCSX. In Fusion Engineering, 2003. 20th IEEE/NPSS Symposium on, pp. 553556. IEEE.
Cooper, W. A., Hirshman, S. P., Merkel, P., Graves, J. P., Kisslinger, J., Wobig, H. F., Narushima, Y., Okamura, S. & Watanabe, K. Y. 2009 Three-dimensional anisotropic pressure free boundary equilibria. Comput. Phys. Commun. 180 (9), 15241533.
Dekeyser, W., Reiter, D. & Baelmans, M. 2012 Divertor design through shape optimization. Contrib. Plasma Phys. 52 (5), 544.
Dekeyser, W., Reiter, D. & Baelmans, M. 2014a Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method. J. Comput. Phys. 278, 117.
Dekeyser, W., Reiter, D. & Baelmans, M. 2014b Divertor target shape optimization in realistic edge plasma geometry. Nucl. Fusion 54 (7), 073022.
Delfour, M. C. & Zolésio, J.-P. 2011 Shapes and geometries: metrics, analysis, differential calculus, and optimization. In Advances in Design and Control, vol. 22. chap. 9. SIAM.
Drevlak, M., Beidler, C., Geiger, J., Helander, P. & Turkin, Y. 2018 Optimisation of stellarator equilibria with ROSE. Nucl. Fusion 59 (1), 016010.
Gardner, H. 1990 Modelling the behaviour of the magnetic field diagnostic coils on the W VII-AS stellarator using a three-dimensional equilibrium code. Nucl. Fusion 30 (8), 1417.
Glowinski, R. & Pironneau, O. 1975 On the numerical computation of the minimum-drag profile in laminar flow. J. Fluid Mech. 72 (2), 385.
Goedbloed, J. & Poedts, S. 2004 Principles of Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press.
Greene, J. M. 1997 A brief review of magnetic wells. Comments on Plasma Physics and Controlled Fusion 17, 389402.
Grieger, G., Lotz, W., Merkel, P., Nührenberg, J., Sapper, J., Strumberger, E., Wobig, H., Burhenn, R., Erckmann, V., Gasparino, U. et al. 1992 Physics optimization of stellarators. Phys. Fluids B: Plasma Phys. 4 (7), 20812091.
Hammond, K., Anichowski, A., Brenner, P., Pedersen, T. S., Raftopoulos, S., Traverso, P. & Volpe, F. 2016 Experimental and numerical study of error fields in the CNT stellarator. Plasma Phys. Control. Fusion 58 (7), 074002.
Hanson, J. D. & Cary, J. R. 1984 Elimination of stochasticity in stellarators. Phys. Fluids 27 (4), 767.
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Progr. Phys. 77 (8), 087001.
Hirshman, S., Spong, D., Whitson, J., Nelson, B., Batchelor, D., Lyon, J., Sanchez, R., Brooks, A., Y.-Fu, G., Goldston, R. et al. 1999 Physics of compact stellarators. Phys. Plasmas 6 (5), 18581864.
Hirshman, S. P. & Whitson, J. C. 1983 Steepest descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 3553.
Klinger, T., Baylard, C., Beidler, C., Boscary, J., Bosch, H., Dinklage, A., Hartmann, D., Helander, P., Maßberg, H., Peacock, A. et al. 2013 Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant. Fusion Engng Des. 88 (6-8), 461.
Landreman, M. & Paul, E. J. 2018 Computing local sensitivity and tolerances for stellarator physics properties using shape gradients. Nucl. Fusion 58 (7), 076023.
Lazerson, S. A. 2012 The virtual-casing principle for 3D toroidal systems. Plasma Phys. Control. Fusion 54 (12), 122002.
Nemov, V., Kasilov, S., Kernbichler, W. & Heyn, M. 1999 Evaluation of 1/ $\unicode[STIX]{x1D708}$ neoclassical transport in stellarators. Phys. Plasmas 6 (12), 46224632.
Nührenberg, C., Boozer, A. H. & Hudson, S. R. 2009 Magnetic-surface quality in nonaxisymmetric plasma equilibria. Phys. Rev. Lett. 102 (23), 235001.
Onsager, L. 1931 Reciprocal relations in irreversible processes. I. Phys. Rev. 37 (4), 405.
Paul, E., Landreman, M., Bader, A. & Dorland, W. 2018 An adjoint method for gradient-based optimization of stellarator coil shapes. Nucl. Fusion 58 (7), 076015.
Pironneau, O. 1974 On optimum design in fluid mechanics. J. Fluid Mech. 64 (1), 97110.
Rudin, W. 2006 Real and Complex Analysis, chap. 2. McGraw-Hill Education.
Strickler, D. J., Hirshman, S. P., Spong, D. A., Cole, M. J., Lyon, J. F., Nelson, B. E., Williamson, D. E. & Ware, A. S. 2004 Development of a robust quasi-poloidal compact stellarator. Fusion Sci. Technol. 45 (1), 1526.
Strykowsky, R., Brown, T., Chrzanowski, J., Cole, M., Heitzenroeder, P., Neilson, G., Rej, D. & Viol, M. 2009 Engineering cost & schedule lessons learned on NCSX. In Fusion Engineering, 2009. SOFE 2009. 23rd IEEE/NPSS Symposium on, pp. 14.
Williamson, D., Brooks, A., Brown, T., Chrzanowski, J., Cole, M., Fan, H., Freudenberg, K., Fogarty, P., Hargrove, T., Heitzenroeder, P. et al. 2005 Challenges in designing the modular coils for the National Compact Stellarator Experiment (NCSX). In Fusion Engineering 2005, Twenty-First IEEE/NPS Symposium on, p. 1. Institute of Electrical and Electronic Engineers (IEEE).
Yamazaki, K., Yanagi, N., Ji, H., Kaneko, H., Ohyabu, N., Satow, T., Morimoto, S., Yamamoto, J., Motojima, O.& The LHD Design Group 1993 Requirements for accuracy of superconducting coils in the Large Helical Device. Fusion Engng Des. 20, 7986.
Zarnstorff, M. C., Berry, L. A., Brooks, A., Fredrickson, E., Fu, G.-Y., Hirshman, S., Hudson, S., Ku, L.-P., Lazarus, E., Mikkelsen, D. et al. 2001 Physics of the compact advanced stellarator NCSX. Plasma Phys. Control. Fusion 43 (12A), A237.
Zhu, C., Hudson, S. R., Lazerson, S. A., Song, Y. & Wan, Y. 2018 Hessian matrix approach for determining error field sensitivity to coil deviations. Plasma Phys. Control. Fusion 60 (5), 054016.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Adjoint approach to calculating shape gradients for three-dimensional magnetic confinement equilibria

  • Thomas Antonsen (a1), Elizabeth J. Paul (a1) and Matt Landreman (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed