Skip to main content Accessibility help

ALPS: the Arbitrary Linear Plasma Solver

  • D. Verscharen (a1) (a2), K. G. Klein (a3) (a4), B. D. G. Chandran (a2) (a5), M. L. Stevens (a6), C. S. Salem (a7) and S. D. Bale (a7) (a8)...


The Arbitrary Linear Plasma Solver (ALPS) is a parallelised numerical code that solves the dispersion relation in a hot (even relativistic) magnetised plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution functions for any direction of wave propagation with respect to the background field. ALPS reads the background momentum distributions as tables of values on a $(p_{\bot },p_{\Vert })$ grid, where $p_{\bot }$ and $p_{\Vert }$ are the momentum coordinates in the directions perpendicular and parallel to the background magnetic field, respectively. We present the mathematical and numerical approach used by ALPS and introduce our algorithms for the handling of poles and the analytic continuation for the Landau contour integral. We then show test calculations of dispersion relations for a selection of stable and unstable configurations in Maxwellian, bi-Maxwellian, $\unicode[STIX]{x1D705}$ -distributed and Jüttner-distributed plasmas. These tests demonstrate that ALPS derives reliable plasma dispersion relations. ALPS will make it possible to determine the properties of waves and instabilities in the non-equilibrium plasmas that are frequently found in space, laboratory experiments and numerical simulations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      ALPS: the Arbitrary Linear Plasma Solver
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      ALPS: the Arbitrary Linear Plasma Solver
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      ALPS: the Arbitrary Linear Plasma Solver
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Armstrong, T. P., Paonessa, M. T., Bell, E. V. II & Krimigis, S. M. 1983 Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res. 88, 88938904.
Astfalk, P., Görler, T. & Jenko, F. 2015 DSHARK: a dispersion relation solver for obliquely propagating waves in bi-kappa-distributed plasmas. J. Geophys. Res. 120, 71077120.
Astfalk, P. & Jenko, F. 2017 Leopard: a grid-based dispersion relation solver for arbitrary gyrotropic distributions. J. Geophys. Res. 122 (1), 89101; 2016JA023522.
Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C. & Sundkvist, D. 2009 Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103 (21), 211101.
Buti, B. 1962 Plasma oscillations and landau damping in a relativistic gas. Phys. Fluids 5, 15.
Camporeale, E. & Burgess, D. 2017 Comparison of linear modes in kinetic plasma models. J. Plasma Phys. 83 (2), 535830201.
Cannon, J. R. & Miller, K. 1965 Some problems in numerical analytic continuation. J. Soc. Ind. Appl. Maths B 2 (1), 87.
Cattaert, T., Hellberg, M. A. & Mace, R. L. 2007 Oblique propagation of electromagnetic waves in a kappa-Maxwellian plasma. Phys. Plasmas 14 (8), 082111.
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20, 719722.
Chacón-Acosta, G., Dagdug, L. & Morales-Técotl, H. A. 2010 Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E 81 (2), 021126.
Christon, S. P., Mitchell, D. G., Williams, D. J., Frank, L. A., Huang, C. Y. & Eastman, T. E. 1988 Energy spectra of plasma sheet ions and electrons from about 50 eV/e to about 1 MeV during plamsa temperature transitions. J. Geophys. Res. 93, 25622572.
Davidson, R. C. & Ogden, J. M. 1975 Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys. Fluids 18, 10451050.
Davis, P. J. & Rabinowitz, P. 1984 Methods of Numerical Integration, 2nd edn. Academic Press.
Donato, G. & Belongie, S. 2002 Approximate thin plate spline mappings. In Proceedings of the 7th European Conference on Computer Vision-Part III, pp. 2131. Springer.
Drummond, W. E. & Rosenbluth, M. N. 1963 Cyclotron radiation from a hot plasma. Phys. Fluids 6, 276283.
Dum, C. T., Marsch, E. & Pilipp, W. 1980 Determination of wave growth from measured distribution functions and transport theory. J. Plasma Phys. 23, 91113.
Egedal, J., Daughton, W. & Le, A. 2012 Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nature 8, 321324.
Egedal, J., Le, A. & Daughton, W. 2013 A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20 (6), 061201.
Eviatar, A. & Schulz, M. 1970 Ion-temperature anisotropies and the structure of the solar wind. Planet. Space Sci. 18, 321332.
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D. & Gary, S. P. 1975 Solar wind electrons. J. Geophys. Res. 80, 41814196.
Fu, C.-L., Zhang, Y.-X., Cheng, H. & Ma, Y.-J. 2012 Numerical analytic continuation on bounded domains. Engng Anal. Bound. Elem. 36, 493.
Fujiwara, H., Imai, H., Takeuchi, T. & Iso, Y. 2007 Numerical treatment of analytic continuation with multiple-precision arithmetic. Hokkaido Math. J. 36, 837.
Gaelzer, R. & Ziebell, L. F. 2016 Obliquely propagating electromagnetic waves in magnetized kappa plasmas. Phys. Plasmas 23 (2), 022110.
Gaelzer, R., Ziebell, L. F. & Meneses, A. R. 2016 The general dielectric tensor for bi-kappa magnetized plasmas. Phys. Plasmas 23 (6), 062108.
Gaffey, J. D. Jr. 1976a Energetic ion distribution resulting from neutral beam injection in tokamaks. J. Plasma Phys. 16, 149169.
Gaffey, J. D. Jr. 1976b Instability of energetic ion beam injection in tokamaks. J. Plasma Phys. 16, 171179.
Galvaõ, R. A., Ziebell, L. F., Gaelzer, R. & de Juli, M. C. 2012 Alfvén waves in dusty plasmas with plasma particles described by anisotropic kappa distributions. Phys. Plasmas 19 (12), 123705.
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.
Gosling, J. T. 2007 Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. Lett. 671, L73L76.
Gosling, J. T., Asbridge, J. R., Bame, S. J., Feldman, W. C., Zwickl, R. D., Paschmann, G., Sckopke, N. & Hynds, R. J. 1981 Interplanetary ions during an energetic storm particle event – the distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res. 86, 547554.
Gosling, J. T., Eriksson, S., Phan, T. D., Larson, D. E., Skoug, R. M. & McComas, D. J. 2007 Direct evidence for prolonged magnetic reconnection at a continuous x-line within the heliospheric current sheet. Geophys. Res. Lett. 34, 6102.
Harris, E. G. 1961 Plasma instabilities associated with anisotropic velocity distributions. J. Nucl. Energy 2, 138145.
Heidbrink, W. W. & Sadler, G. J. 1994 REVIEW PAPER: the behaviour of fast ions in tokamak experiments. Nucl. Fusion 34, 535615.
Hellberg, M., Mace, R. & Cattaert, T. 2005 Effects of superthermal particles on waves in magnetized space plasmas. Space Sci. Rev. 121, 127139.
Hellinger, P., Trávníček, P., Kasper, J. C. & Lazarus, A. J. 2006 Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, 9101.
Hellinger, P. & Trávníček, P. M. 2011 Proton core-beam system in the expanding solar wind: hybrid simulations. J. Geophys. Res. 116, 11101.
Hellinger, P. & Trávníček, P. M. 2013 Protons and alpha particles in the expanding solar wind: hybrid simulations. J. Geophys. Res. 118, 54215430.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
Hundhausen, A. J. 1970 Composition and dynamics of the solar wind plasma. Rev. Geophys. Space Phys. 8, 729811.
Isenberg, P. A. 2012 A self-consistent marginally stable state for parallel ion cyclotron waves. Phys. Plasmas 19 (3), 032116.
Jüttner, F. 1911 Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Ann. Phys. 339, 856882.
Klein, K. G., Alterman, B. L., Stevens, M. L., Vech, D. & Kasper, J. C. 2018 Majority of solar wind intervals support ion-driven instabilities. Phys. Rev. Lett. 120, 205102.
Klein, K. G. & Howes, G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22 (3), 032903.
Klein, K. G., Howes, G. G., TenBarge, J. M., Bale, S. D., Chen, C. H. K. & Salem, C. S. 2012 Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159.
Klein, K. G., Kasper, J. C., Korreck, K. E. & Stevens, M. L. 2017 Applying Nyquist’s method for stability determination to solar wind observations. J. Geophys. Res. 122, 98159823.
Kranich, S.2014 Computational analytic continuation. Preprint, arXiv:1403.2858.
Kunz, M. W., Schekochihin, A. A., Chen, C. H. K., Abel, I. G. & Cowley, S. C. 2015 Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. J. Plasma Phys. 81 (5), 325810501.
Landau, L. D. 1946 On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 2534; [Zh. Eksp. Teor. Fiz. 16,574 (1946)].
Lazar, M. & Poedts, S. 2014 Instability of the parallel electromagnetic modes in Kappa distributed plasmas – II. Electromagnetic ion-cyclotron modes. Mon. Not. R. Astron. Soc. 437, 641648.
Lazar, M., Poedts, S. & Schlickeiser, R. 2011 Proton firehose instability in bi-Kappa distributed plasmas. Astron. Astrophys. 534, A116.
Lazar, M. & Schlickeiser, R. 2006 Relativistic kinetic dispersion theory of linear parallel waves in magnetized plasmas with isotropic thermal distributions. New J. Phys. 8, 66.
Lazar, M. & Poedts, S. 2009 Firehose instability in space plasmas with bi-kappa distributions. Astron. Astrophys. 494, 311315.
Lerche, I. 1967 Unstable magnetosonic waves in a relativistic plasma. Astrophys. J. 147, 689.
Lerche, I. 1968 Supra-luminous waves and the power spectrum of an isotropic, homogeneous plasma. Phys. Fluids 11, 413422.
Leubner, M. P. 1978 Influence of non-bi-Maxwellian distribution function of solar wind protons on the ion cyclotron instability. J. Geophys. Res. 83, 39003902.
Levenberg, K. 1944 A method for the solution of certain non-linear problems in least squares. Q. Appl. Maths 2 (2), 164168.
Lifshitz, E. M. & Pitaevskii, L. P. 1981 Physical Kinetics. Pergamon Press.
Longman, I. M. 1958 On the numerical evaluation of cauchy principal values of integrals. Math. Tables Other Aids Comput. 12 (63), 205.
López, R. A., Moya, P. S., Muñoz, V., Viñas, A. F. & Valdivia, J. A. 2014 Kinetic transverse dispersion relation for relativistic magnetized electron–positron plasmas with Maxwell–Jüttner velocity distribution functions. Phys. Plasmas 21 (9), 092107.
López, R. A., Moya, P. S., Navarro, R. E., Araneda, J. A., Muñoz, V., Viñas, A. F. & Valdivia, A. J. 2016 Relativistic cyclotron instability in anisotropic plasmas. Astrophys. J. 832, 36.
Lui, A. T. Y. & Krimigis, S. M. 1981 Earthward transport of energetic protons in the earth’s plasma sheet. Geophys. Res. Lett. 8, 527530.
Lui, A. T. Y. & Krimigis, S. M. 1983 Energetic ion beam in the earth’s magnetotail lobe. Geophys. Res. Lett. 10, 1316.
Mace, R. L. & Sydora, R. D. 2010 Parallel whistler instability in a plasma with an anisotropic bi-kappa distribution. J. Geophys. Res. 115, 7206.
Marquardt, D. W. 1963 An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Maths 11 (2), 431441.
Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.
Marsch, E., Rosenbauer, H., Schwenn, R., Muehlhaeuser, K.-H. & Neubauer, F. M. 1982a Solar wind helium ions – Observations of the HELIOS solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 3551.
Marsch, E., Schwenn, R., Rosenbauer, H., Muehlhaeuser, K.-H., Pilipp, W. & Neubauer, F. M. 1982b Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 5272.
Marsch, E. & Tu, C.-Y. 2001 Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves. J. Geophys. Res. 106, 83578362.
Maruca, B. A., Kasper, J. C. & Gary, S. P. 2012 Instability-driven limits on helium temperature anisotropy in the solar wind: observations and linear vlasov analysis. Astrophys. J. 748, 137.
Matsuda, Y. & Smith, G. R. 1992 A microinstability code for a uniform magnetized plasma with an arbitrary distribution function. J. Comput. Phys. 100, 229235.
Phan, T. D., Gosling, J. T., Davis, M. S., Skoug, R. M., Øieroset, M., Lin, R. P., Lepping, R. P., McComas, D. J., Smith, C. W., Reme, H. et al. 2006 A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175178.
Pilipp, W. G., Muehlhaeuser, K.-H., Miggenrieder, H., Montgomery, M. D. & Rosenbauer, H. 1987a Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 10751092.
Pilipp, W. G., Muehlhaeuser, K.-H., Miggenrieder, H., Rosenbauer, H. & Schwenn, R. 1987b Variations of electron distribution functions in the solar wind. J. Geophys. Res. 92, 11031118.
Powell, M. J. D. 1994 Some algorithms for thin-plate spline interpolation to functions of two variables. In Advances in Computational Mathematics, New Delhi, India (ed. Dikshit, H. P. & Micchelli, C. A.), pp. 303319. World Scientific.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn. Cambridge University Press.
Pulupa, M., Salem, C. S., Horaites, K. I. & Bale, S. 2011 Solar wind electron microphysics: results from a Wind electron database. In AGU Fall Meeting Abstracts, p. B2034.
Quataert, E. 1998 Particle heating by alfvenic turbulence in hot accretion flows. Astrophys. J. 500, 978.
Reichel, L. 1986 Numerical methods for analytic continuation and mesh generation. Constr. Approx. 2, 23.
Reisenfeld, D. B., Gary, S. P., Gosling, J. T., Steinberg, J. T., McComas, D. J., Goldstein, B. E. & Neugebauer, M. 2001 Helium energetics in the high-latitude solar wind: Ulysses observations. J. Geophys. Res. 106, 56935708.
Robinson, P. A. 1990 Systematic methods for calculation of the dielectric properties of arbitrary plasmas. J. Comput. Phys. 88, 381392.
Roennmark, K.1982 Waves in homogeneous, anisotropic multicomponent plasmas (WHAMP). Report No. 179, ISSN: 0347-6406. Kiruna, Sweden: Kiruna Geophysical Institute.
Rudakov, L. I. & Sagdeev, R. Z. 1961 On the instability of a nonuniform rarefied plasma in a strong magnetic field. Sov. Phys. Dokl. 6, 415.
Salem, C. S., Pulupa, M., Verscharen, D., Bale, S. D. & Chandran, B. D. 2013 Electron temperature anisotropies in the solar wind: properties, regulation and constraints. In AGU Fall Meeting Abstracts, p. B2104.
Schwartz, S. J. 1980 Plasma instabilities in the solar wind – a theoretical review. Rev. Geophys. Space Phys. 18, 313336.
Seki, M., Saigusa, M., Nemoto, M., Kusama, K., Tobita, T., Kuriyama, M. & Uehara, K. 1989 Observation of ion-cyclotron-wave instability caused by perpendicular neutral beam injection in the JT-60 tokamak. Phys. Rev. Lett. 62, 19891992.
Shkarofsky, I. P. 1966 Dielectric tensor in Vlasov plasmas near cyclotron harmonics. Phys. Fluids 9, 561570.
Southwood, D. J. & Kivelson, M. G. 1993 Mirror instability. I – physical mechanism of linear instability. J. Geophys. Res. 98, 91819187.
Stix, T. H. 1975 Fast-wave heating of a two-component plasma. Nucl. Fusion 15, 737754.
Stix, T. H. 1992 Waves in Plasmas. American Institute of Physics.
Štverák, Š., Maksimovic, M., Trávníček, P. M., Marsch, E., Fazakerley, A. N. & Scime, E. E. 2009 Radial evolution of nonthermal electron populations in the low-latitude solar wind: helios, cluster, and ulysses observations. J. Geophys. Res. 114, A05104.
Summers, D. & Thorne, R. M. 1991 The modified plasma dispersion function. Phys. Fluids B 3, 18351847.
Summers, D., Xue, S. & Thorne, R. M. 1994 Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function. Phys. Plasmas 1, 20122025.
Swanson, D. G. 2002 Exact and moderately relativistic plasma dispersion functions. Plasma Phys. Control. Fusion 44, 13291347.
Tajiri, M. 1967 Propagation of hydromagnetic waves in collisionless plasma. II. Kinetic Approach. J. Phys. Soc. Japan 22, 1482.
Tang, W. M. 1978 Microinstability theory in tokamaks. Nucl. Fusion 18, 10891160.
Trubnikov, B. A. 1959 Electromagnetic waves in a relativistic plasma in the presence of a magnetic field. In Plasma Physics and the Problem of Controlled Thermonuclear Reactions (ed. Leontovich, M. A.), vol. 3, p. 122. Pergamon Press.
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 28392884.
Verscharen, D., Bourouaine, S. & Chandran, B. D. G. 2013 Instabilities driven by the drift and temperature anisotropy of alpha particles in the solar wind. Astrophys. J. 773, 163.
Verscharen, D. & Chandran, B. D. G. 2013 The dispersion relations and instability thresholds of oblique plasma modes in the presence of an ion beam. Astrophys. J. 764, 88.
Verscharen, D. & Chandran, B. D. G. 2018 NHDS: the new hampshire dispersion relation solver. Res. Notes AAS 2, 13.
Verscharen, D., Chandran, B. D. G., Klein, K. G. & Quataert, E. 2016 Collisionless isotropization of the solar-wind protons by compressive fluctuations and plasma instabilities. Astrophys. J. 831, 128.
Verscharen, D., Chen, C. H. K. & Wicks, R. T. 2017 On kinetic slow modes, fluid slow modes, and pressure-balanced structures in the solar wind. Astrophys. J. 840, 106.
Weideman, J. A. C. 1995 Computing the Hilbert transform on the real line. Math. Comput. 64, 745762.
Williams, D. J., Mitchell, D. G. & Christon, S. P. 1988 Implications of large flow velocity signatures in nearly isotropic ion distributions. Geophys. Res. Lett. 15, 303306.
Xie, H.-S. 2013 Generalized plasma dispersion function: one-solve-all treatment, visualizations, and application to Landau damping. Phys. Plasmas 20 (9), 092125.
Xue, S., Thorne, R. M. & Summers, D. 1993 Electromagnetic ion-cyclotron instability in space plasmas. J. Geophys. Res. 98, 1747517484.
Xue, S., Thorne, R. M. & Summers, D. 1996 Excitation of magnetosonic waves in the undisturbed solar wind. Geophys. Res. Lett. 23, 25572560.
Yoon, P. H., Seough, J. J., Khim, K. K., Kim, H., Kwon, H.-J., Park, J., Parkh, S. & Park, K. S. 2010 Analytic model of electromagnetic ion-cyclotron anisotropy instability. Phys. Plasmas 17 (8), 082111.
Zhang, Z.-Q. & Ma, Y.-J. 2013 A modified kernel method for numerical analytic continuation. Inverse Prob. Sci. Engng 21 (5), 840.
MathJax is a JavaScript display engine for mathematics. For more information see


ALPS: the Arbitrary Linear Plasma Solver

  • D. Verscharen (a1) (a2), K. G. Klein (a3) (a4), B. D. G. Chandran (a2) (a5), M. L. Stevens (a6), C. S. Salem (a7) and S. D. Bale (a7) (a8)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed