Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-phmbd Total loading time: 0.201 Render date: 2022-07-06T08:15:20.199Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Amplification of neutrino oscillations by a density ripple in dense plasmas

Published online by Cambridge University Press:  21 January 2011

P. K. SHUKLA*
Affiliation:
RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Institute for Theoretical Physics V, Faculty of Physics & Astronomy, Ruhr University Bochum, 44780 Bochum, Germany; Scottish Universities Physics Alliance (SUPA), Department of Physics, University of Strathclyde, Glasgow, Scotland; School of Physics, University of KwaZulu-Natal, Durban 4000 Durban, South Africa; and Departamento de Física and Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal, profshukla@yahoo.de, ps@tp4.rub.de)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a pre-existing electron density ripple in a dense plasma can excite electron neutrino oscillations. For our purposes, we use the dispersion relation for neutrino oscillations and derive the Mathieu equation for the propagation of neutrino oscillations in the presence of a spatially oscillating electron density ripple. The Mathieu equation predicts instability of neutrino oscillations. The criterion under which instability occurs is presented. Analytical expressions for the neutrino oscillation frequency and the growth rate are obtained. The possible relevance of our investigation to non-thermal neutrino oscillations in dense plasma environments (e.g. the supernovae, the core of white dwarf stars etc.) is briefly mentioned.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2011

References

[1]Bethe, H. A. 1986 Phys. Rev. Lett. 56, 1305.CrossRefGoogle Scholar
[2]Bethe, H. A. 1990 Rev. Mod. Phys. 62, 801.CrossRefGoogle Scholar
[3]Kuo, T. K. and Pantaleone, J. 1989 Rev. Mod. Phys. 62, 937.CrossRefGoogle Scholar
[4]Bingham, R., Dawson, J. M., Su, J. J. and Bethe, H. A. 1994 Phys. Lett. A 193, 279.CrossRefGoogle Scholar
[5]Bingham, R., Bethe, H. A., Dawson, J. M., Shukla, P. K. and Su, J. J. 1996 Phys. Lett. A 220, 107.CrossRefGoogle Scholar
[6]Silva, L. O., Bingham, R., Dawson, J. M. et al. , 1999 Phys. Rev. Lett. 83, 2703.CrossRefGoogle Scholar
[7]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
[8]McLachlan, N. W. 1964 Theory and Application of Mathieu Equations, chapter IV. New York: Dover.Google Scholar
[9]Lin, A. T., Kaw, P. K. and Dawson, J. M. 1978 Phys. Rev. A 8, 2618.CrossRefGoogle Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Amplification of neutrino oscillations by a density ripple in dense plasmas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Amplification of neutrino oscillations by a density ripple in dense plasmas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Amplification of neutrino oscillations by a density ripple in dense plasmas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *