Skip to main content Accessibility help
×
Home

Analytical estimates of proton acceleration in laser-produced turbulent plasmas

  • Konstantin A. Beyer (a1), Brian Reville (a2), Archie F. A. Bott (a1), Hye-Sook Park (a3), Subir Sarkar (a1) (a4) and Gianluca Gregori (a1)...

Abstract

With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that second-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentum-space diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analytical estimates of proton acceleration in laser-produced turbulent plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analytical estimates of proton acceleration in laser-produced turbulent plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analytical estimates of proton acceleration in laser-produced turbulent plasmas
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: konstantin.beyer@physics.ox.ac.uk

References

Hide All
Ballabio, L., Källne, J. & Gorini, G. 1998 Relativistic calculation of fusion product spectra for thermonuclear plasmas. Nucl. Fusion 38, 17231735.
Becker, P. A., Le, T. & Dermer, C. D. 2006 Time-dependent stochastic particle acceleration in astrophysical plasmas: exact solutions including momentum-dependent escape. Astrophys. J. 647, 539551.
Bell, A. R. 1978 The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147156.
Bell, A. R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550558.
Blandford, R. & Eichler, D. 1987 Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 175.
Blandford, R. D. & Ostriker, J. P. 1978 Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29.
Boehly, T. R., Brown, D. L., Craxton, R. S., Keck, R. L., Knauer, J. P., Kelly, J. H., Kessler, T. J., Kumpan, S. A., Loucks, S. J., Letzring, S. A. et al. 1997 Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495506.
Braginskii, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205.
Chen, L. E., Bott, A. F. A., Tzeferacos, P., Rigby, A., Bell, A., Bingham, R., Graziani, C., Katz, J., Koenig, M. & Li, C. K.2018 Stochastic transport of high-energy particles through a turbulent plasma. arXiv:plasma-ph/1808.04430.
Cowsik, R. & Sarkar, S. 1984 The evolution of supernova remnants as radio sources. Mon. Not. R. Astron. Soc. 207, 745, erratum: ibid, 209:719,1984.
Fermi, E. 1949 On the origin of the cosmic radiation. Phys. Rev. 75, 1169.
Fermi, E. 1954 Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119, 1.
Gregori, G., Reville, B. & Miniati, F. 2015 The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers. Phys. Rep. 601, 134.
Hall, D. E. & Sturrock, P. A. 1967 Diffusion, scattering, and acceleration of particles by stochastic electromagnetic fields. Phys. Fluids 10, 26202628.
Hardcastle, M. J., Cheung, C. C., Feain, I. J. & Stawarz, Ł. 2009 High-energy particle acceleration and production of ultra-high-energy cosmic rays in the giant lobes of Centaurus A. Mon. Not. R. Astron. Soc. 393, 10411053.
Hicks, D. G., Li, C. K., Séguin, F. H., Ram, A. K., Frenje, J. A., Petrasso, R. D., Soures, J. M., Glebov, V. Y., Meyerhofer, D. D., Roberts, S. et al. 2000 Charged-particle acceleration and energy loss in laser-produced plasmas. Phys. Plasmas 7, 51065117.
Hillas, A. M. 1984 The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425444.
Hogan, W. J., Moses, E. I., Warner, B. E., Sorem, M. S. & Soures, J. M. 2001 The national ignition facility. Nucl. Fusion 41, 567573.
Kaplan, S. A. 1956 The theory of the acceleration of charged particles by isotropic gas magnetic turbulent fields. Sov. Phys. 2, 203.
Kulsrud, R. M. 1995 Important plasma problems in astrophysics. Phys. Plasmas 2 (5), 1735.
Lehner, G. & Pohl, F. 1967 Reaktionsneutronen als Hilfsmittel der Plasmadiagnostik. Z. Phys. 207, 83104.
Marcowith, A., Bret, A., Bykov, A., Dieckman, M. E., O’C Drury, L., Lembège, B., Lemoine, M., Morlino, G., Murphy, G., Pelletier, G. et al. 2016 The microphysics of collisionless shock waves. Rep. Prog. Phys. 79 (4), 046901.
Meinecke, J., Doyle, H. W., Miniati, F., Bell, A. R., Bingham, R., Crowston, R., Drake, R. P., Fatenejad, M., Koenig, M., Kuramitsu, Y. et al. 2014 Turbulent amplification of magnetic fields in laboratory laser-produced shock waves. Nat. Phys. 10, 520524.
Meinecke, J., Tzeferacos, P., Bell, A., Bingham, R., Clarke, R., Churazov, E., Crowston, R., Doyle, H., Drake, R. P., Heathcote, R. et al. 2015 Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas. Proc. Natl Acad. Sci. 112, 82118215.
Mertsch, P. 2011 A new analytic solution for 2nd-order Fermi acceleration. J. Cosmology Astroparticle Phys. 12, 010.
Mertsch, P. & Sarkar, S. 2011 Fermi gamma-ray ‘bubbles’ from stochastic acceleration of electrons. Phys. Rev. Lett. 107 (9), 091101.
Nelson, G. J. & Melrose, D. B. 1985 Type II Bursts, p. 333. Cambridge University Press.
Ostrowski, M. & Siemieniec-Oziȩbło, G. 1997 Diffusion in momentum space as a picture of second-order Fermi acceleration. Astroparticle Phys. 6, 271277.
O’Sullivan, S., Reville, B. & Taylor, A. M. 2009 Stochastic particle acceleration in the lobes of giant radio galaxies. Mon. Not. R. Astron. Soc. 400, 248257.
Petrosian, V. 2012 Stochastic acceleration by turbulence. Space Sci. Rev. 173, 535556.
Ross, J. S., Higginson, D. P., Ryutov, D., Fiuza, F., Hatarik, R., Huntington, C. M., Kalantar, D. H., Link, A., Pollock, B. B., Remington, B. A. et al. 2017 Transition from collisional to collisionless regimes in interpenetrating plasma flows on the national ignition facility. Phys. Rev. Lett. 118 (18), 185003.
Ryutov, D., Drake, R. P., Kane, J., Liang, E., Remington, B. A. & Wood-Vasey, W. M. 1999 Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J. 518, 821.
Schekochihin, A. A. & Cowley, S. C. 2006 Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas 13 (5), 056501.
Spitzer, L. & Härm, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.
Tramacere, A., Massaro, F. & Cavaliere, A. 2007 Signatures of synchrotron emission and of electron acceleration in the X-ray spectra of Mrk 421. Astron. Astrophys. 466, 521529.
Tverskoǐ, B. A. 1967 Contribution to the theory of fermi statistical acceleration. Sov. J. Exp. Theor. Phys. 25, 317.
Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F. et al. 2018 Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. Nat. Commun. 9, 591.
Zylstra, A. B., Frenje, J. A., Grabowski, P. E., Li, C. K., Collins, G. W., Fitzsimmons, P., Glenzer, S., Graziani, F., Hansen, S. B., Hu, S. X. et al. 2015 Measurement of charged-particle stopping in warm dense plasma. Phys. Rev. Lett. 114 (21), 215002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed